Publications by authors named "Namasivayam C"

This work aims to evaluate the removal of pharmaceutical drug using discarded biodiesel waste-derived lignocellulosic-based activated carbon biomaterial. Lignocellulosic-based activated carbon (LAC) biomaterial was prepared from Jatropha shell (biodiesel processing waste) by a zinc chloride activation method. The LAC biomaterial was characterized using various techniques including powder XRD, FT-IR, SEM-EDAX, and BET analysis.

View Article and Find Full Text PDF

Waste Fe (III)/Cr (III) hydroxide was investigated for the removal of anionic dyes, namely acid brilliant blue (acidic dye) and procion red (reactive azo dye) from aqueous solution. In batch experiments, parameters studied include contact time, adsorbate concentration, pH, adsorbent dose and temperature. Adsorption followed Langmuir isotherm with adsorption capacity of 10.

View Article and Find Full Text PDF

Coconut coir pith, an agricultural solid waste was used as biosorbent for the removal of chromium(VI) after modification with a cationic surfactant, hexadecyltrimethylammonium bromide. Optimum pH for Cr(VI) adsorption was found to be 2.0.

View Article and Find Full Text PDF

The surface of coir pith, an agricultural solid waste was modified using a cationic surfactant, hexadecyltrimethylammonium bromide (HDTMA) and the modified coir pith was investigated to assess the capacity for the removal of phosphate from aqueous solution. Optimum pH for maximum phosphate adsorption was found to be 4.0.

View Article and Find Full Text PDF

Removal of molybdate on to industrial solid waste Fe(III)/Cr(III) hydroxide as adsorbent has been investigated. Pretreated adsorbent was found to be more efficient in the uptake of molybdate compared to untreated adsorbent. Effect of pH on the adsorption was studied in the pH range 4.

View Article and Find Full Text PDF

Batch mode studies were conducted to study the removal of phenol, 2,4,6-Trichlorophenol (TCP) and Pentachlorophenol (PCP) from aqueous solution on coir pith carbon by adsorption process under varying experimental conditions such as agitation time, adsorbent dose, pH and temperature. Kinetics of adsorption obeyed second order rate equation and the rate constant was found to be in the range 0.0098-0.

View Article and Find Full Text PDF

Varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature carried out the potential feasibility of thermally activated coir pith carbon prepared from coconut husk for removal of methylene blue. Greater percentage of dye was removed with decrease in the initial concentration of dye and increase in amount of adsorbent used. Kinetic study showed that the adsorption of dye on coir pith carbon was a gradual process.

View Article and Find Full Text PDF

The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl(2) activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated.

View Article and Find Full Text PDF

The adsorption of thiocyanate onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of various parameters such as agitation time, thiocyanate concentration, adsorbent dose, pH and temperature has been studied. Adsorption followed second-order rate kinetics.

View Article and Find Full Text PDF

Removal and recovery of molybdate from aqueous solution was investigated using ZnCl2 activated carbon developed from coir pith. Studies were conducted to delineate the effects of contact time, adsorbent dose, molybdate concentration, pH and temperature. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results.

View Article and Find Full Text PDF

Industrial solid waste, Fe(III)/Cr(III) hydroxide, was investigated to assess the capacity for the removal of phosphate from aqueous solution. Langmuir and Freundlich isotherms were used to model the adsorption equilibrium data. The system follows both isotherms.

View Article and Find Full Text PDF

Removal of direct red 12B and methylene blue by adsorption onto Fe (III)/Cr (III) hydroxide was studied using various parameters such as agitation time, dye concentration, adsorbent dose and pH. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second-order rate kinetics.

View Article and Find Full Text PDF

Phosphate removal from aqueous solution was investigated using ZnCl(2)-activated carbon developed from coir pith, an agricultural solid waste. Studies were conducted to delineate the effect of contact time, adsorbent dose, phosphate concentration, pH, and temperature. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms.

View Article and Find Full Text PDF

Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics.

View Article and Find Full Text PDF

Activated carbon was prepared from coirpith by a chemical activation method and characterized. The adsorption of toxic heavy metals, Hg(II), Pb(II), Cd(II), Ni(II), and Cu(II) was studied using synthetic solutions and was reported elsewhere. In the present work the adsorption of toxic heavy metals from industrial wastewaters onto coirpith carbon was studied.

View Article and Find Full Text PDF

The adsorption of rhodamine-B and acid violet by coir pith carbon was carried out by varying the parameters such as agitation time, dye concentration, adsorbent dose and pH. The adsorption followed both Langmuir and Freundlich isotherms. The adsorption capacity was found to be 2.

View Article and Find Full Text PDF

The effectiveness of orange peel in adsorbing Acid violet 17 from aqueous solutions has been studied as a function of agitation time, adsorbent dosage, initial dye concentration and pH. The adsorption follows both Langmuir and Freundlich isotherms. The adsorption capacity Q0 was 19.

View Article and Find Full Text PDF

Fe(III)/Cr(III) hydroxide, a waste material from the fertilizer industry, has been used for the adsorption of Cr(VI) from aqueous solution, over a range of initial metal ion concentrations (5-30 mg litre(-1)), agitation times (1-180 min), adsorbent dosages (100-1200 mg per 50 ml), temperatures (24, 29 and 38 degrees C) and pH values (4.5-10). The adsorption of Cr(VI) increased with the initial concentration of Cr(VI) and with temperature.

View Article and Find Full Text PDF

Removal of algae in the reservoir water was studied by electroflocculation using a bipolar cell with aluminum electrodes and flocculation by treatment with commercial alum. Comparison of both the methods is discussed.

View Article and Find Full Text PDF