Hypertrophy of the ligamentum flavum (HLF) is a common contributor to lumbar spinal stenosis (LSS). Fibrosis is a core pathological factor of HLF resulting in degenerative LSS and associated low back pain. Although progress has been made in HLF research, the specific molecular mechanisms that promote HLF remain to be defined.
View Article and Find Full Text PDFBackground: Low back pain is a global health problem that originated mainly from intervertebral disc degeneration (IDD). Autophagy, negatively regulated by the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, prevents metabolic and degenerative diseases by removing and recycling damaged cellular components. Despite growing evidence that autophagy occurs in the intervertebral disc, the regulation of disc cellular autophagy is still poorly understood.
View Article and Find Full Text PDFClosely associated with aging and age-related disorders, cellular senescence (CS) is the inability of cells to proliferate due to accumulated unrepaired cellular damage and irreversible cell cycle arrest. Senescent cells are characterized by their senescence-associated secretory phenotype that overproduces inflammatory and catabolic factors that hamper normal tissue homeostasis. Chronic accumulation of senescent cells is thought to be associated with intervertebral disc degeneration (IDD) in an aging population.
View Article and Find Full Text PDFIntervertebral disc degeneration (IDD) is a primary contributor to low back pain. Immune cells play an extremely important role in modulating the progression of IDD by interacting with disc nucleus pulposus (NP) cells and extracellular matrix (ECM). Encased within the annulus fibrosus, healthy NP is an avascular and immune-privileged tissue that does not normally interact with macrophages.
View Article and Find Full Text PDFPurpose: Lumbar spinal stenosis (LSS) is the most common reason for spinal surgery in patients over the age of 65, and there are few effective non-surgical treatments. Therefore, the development of novel treatment or preventative modalities to decrease overall cost and morbidity associated with LSS is an urgent matter. The cause of LSS is multifactorial; however, a significant contributor is ligamentum flavum hypertrophy (LFH) which causes mechanical compression of the cauda equina or nerve roots.
View Article and Find Full Text PDFObjective: One aim of the Back Pain Consortium (BACPAC) Research Program is to develop an integrated model of chronic low back pain that is informed by combined data from translational research and clinical trials. We describe efforts to maximize data harmonization and accessibility to facilitate Consortium-wide analyses.
Methods: Consortium-wide working groups established harmonized data elements to be collected in all studies and developed standards for tabular and nontabular data (eg, imaging and omics).
As a member of the Back Pain Consortium (BACPAC), the University of Pittsburgh Mechanistic Research Center's research goal is to phenotype chronic low back pain using biological, biomechanical, and behavioral domains using a prospective, observational cohort study. Data will be collected from 1,000 participants with chronic low back pain according to BACPAC-wide harmonized and study-specific protocols. Participation lasts 12 months with one required in person baseline visit, an optional second in person visit for advanced biomechanical assessment, and electronic follow ups at months 1, 2, 3, 4, 5, 6, 9, and 12 to assess low back pain status and response to prescribed treatments.
View Article and Find Full Text PDFThe Biospecimen Collection and Processing Working Group of the National Institutes of Health (NIH) HEAL Initiative BACPAC Research Program was charged with identifying molecular biomarkers of interest to chronic low back pain (cLBP). Having identified biomarkers of interest, the Working Group worked with the New York University Grossman School of Medicine, Center for Biospecimen Research and Development-funded by the Early Phase Pain Investigation Clinical Network Data Coordinating Center-to harmonize consortium-wide and site-specific efforts for biospecimen collection and analysis. Biospecimen collected are saliva, blood (whole, plasma, serum), urine, stool, and spine tissue (paraspinal muscle, ligamentum flavum, vertebral bone, facet cartilage, disc endplate, annulus fibrosus, or nucleus pulposus).
View Article and Find Full Text PDFBackground: Previous animal models of intervertebral disc degeneration (IDD) rely on open surgical approaches, which confound the degenerative response and pain behaviors due to injury to surrounding tissues during the surgical approach. To overcome these challenges, we developed a minimally invasive percutaneous puncture procedure to induce IDD in a rat model.
Methods: Ten Fischer 344 male rats underwent percutaneous annular puncture of lumbar intervertebral discs (IVDs) at L2-3, L3-4, and L4-5.
Background: The intervertebral disc degenerates with age and has a poor propensity for regeneration. Small molecule transport plays a key role in long-term degradation and repair. Convection (bulk flow), induced by low rate cyclic loading of the intervertebral disc, has been shown to increase transport of small molecules.
View Article and Find Full Text PDFPrevious research has identified an association between external radiation and disc degeneration, but the mechanism was poorly understood. This study explores the effects of ionizing radiation (IR) on inducing cellular senescence of annulus fibrosus (AF) in cell culture and in an in vivo mouse model. Exposure of AF cell culture to 10-15 Gy IR for 5 min followed by 5 days of culture incubation resulted in almost complete senescence induction as evidenced by SA-βgal positive staining of cells and elevated mRNA expression of the p16 and p21 senescent markers.
View Article and Find Full Text PDFAgeing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence in the immune system only. We show that Vav-iCre;Ercc1 mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice.
View Article and Find Full Text PDFCellular senescence is a phenotype characterized by irreversible growth arrest, chronic elevated secretion of proinflammatory cytokines and matrix proteases, a phenomenon known as senescence-associated secretory phenotype (SASP). Biomarkers of cellular senescence have been shown to increase with age and degeneration of human disc tissue. Senescent disc cells in culture recapitulate features associated with age-related disc degeneration, including increased secretion of proinflammatory cytokines, matrix proteases, and fragmentation of matrix proteins.
View Article and Find Full Text PDFPurpose: The loss of nutrient supply is a suspected contributor of intervertebral disc degeneration. However, the extent to which low nutrition affects disc annulus fibrosus (AF) cells is unknown as nutrient deprivation has mainly been investigated in disc nucleus pulposus cells. Hence, an experimental study was designed to clarify the effects of limited nutrients on disc AF cell fate, including autophagy, the process by which cells recycle their own damaged components.
View Article and Find Full Text PDFAccumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals.
View Article and Find Full Text PDFStudy Design: ADAMTS5-deficient and wild type (WT) mice were chronically exposed to tobacco smoke to investigate effects on intervertebral disc degeneration (IDD).
Objective: The aim of this study was to demonstrate a role for ADAMTS5 in mediating tobacco smoking-induced IDD.
Summary Of Background Data: We previously demonstrated that chronic tobacco smoking causes IDD in mice because, in part, of proteolytic destruction of disc aggrecan.
Neovascularization of intervertebral discs, a phenomenon considered pathological since normal discs are primarily avascular structures, occurs most frequently in annulus fibrosus (AF) of degenerated discs. Endothelial cells (ECs) are involved in this process, but the mechanism of the interaction between AF and endothelial cells is unclear. In this study, we evaluated the effects on matrix catabolic activity of AF cells by the extracellular endothelial microparticles (EMPs) and soluble protein factors (SUP fraction) produced from ECs.
View Article and Find Full Text PDFAdvanced age is the greatest risk factor for the majority of human ailments, including spine-related chronic disability and back pain, which stem from age-associated intervertebral disc degeneration (IDD). Given the rapid global rise in the aging population, understanding the biology of intervertebral disc aging in order to develop effective therapeutic interventions to combat the adverse effects of aging on disc health is now imperative. Fortunately, recent advances in aging research have begun to shed light on the basic biological process of aging.
View Article and Find Full Text PDFBackground Context: Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection.
Purpose: The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading.
Background Context: Tobacco smoking is a key risk factor for spine degeneration. However, the underlying mechanism by which smoking induces degeneration is not known. Recent studies implicate DNA damage as a cause of spine and intervertebral disc degeneration.
View Article and Find Full Text PDFIntervertebral disc degeneration (IDD) is closely associated with low back pain. Typically nonsurgical treatment of IDD is the most effective when detected early. As such, establishing reliable imaging methods for the early diagnosis of disc degeneration is critical.
View Article and Find Full Text PDFOxidative damage is a well-established driver of aging. Evidence of oxidative stress exists in aged and degenerated discs, but it is unclear how it affects disc metabolism. In this study, we first determined whether oxidative stress negatively impacts disc matrix metabolism using disc organotypic and cell cultures.
View Article and Find Full Text PDFBackground Context: Destruction of extracellular matrix (ECM) leads to intervertebral disc degeneration (IDD), which underlies many spine-related disorders. Matrix metalloproteinases (MMPs), and disintegrins and metalloproteinases with thrombospondin motifs (ADAMTSs) are believed to be the major proteolytic enzymes responsible for ECM degradation in the intervertebral disc (IVD).
Purpose: To summarize the current literature on gene expression and regulation of MMPs, ADAMTSs, and tissue inhibitors of metalloproteinases (TIMPs) in IVD aging and IDD.