Potato is the third most important food crop, but cultivation is challenged by numerous diseases and adverse abiotic conditions. To combat diseases, frequent fungicide application is common. Knocking out susceptibility genes by genome editing could be a durable option to increase resistance.
View Article and Find Full Text PDFContinued climate change impose multiple stressors on crops, including pathogens, salt, and drought, severely impacting agricultural productivity. Innovative solutions are necessary to develop resilient crops. Here, using quantitative potato proteomics, we identify Parakletos, a thylakoid protein that contributes to disease susceptibility.
View Article and Find Full Text PDFSignificant shares of harvests are lost to pests and diseases, therefore, minimizing these losses could solve part of the supply constraints to feed the world. Cisgenesis is defined as the insertion of genetic material into a recipient organism from a donor that is sexually compatible. Here, we review (i) conventional plant breeding, (ii) cisgenesis, (iii) current pesticide-based disease management, (iv) potential economic implications of cultivating cisgenic crops with durable disease resistances, and (v) potential environmental implications of cultivating such crops; focusing mostly on potatoes, but also apples, with resistances to Phytophthora infestans and Venturia inaequalis, respectively.
View Article and Find Full Text PDFSchemes for efficient regenerationand recovery of shoots from tissues or single cells, such as protoplasts, are only available for limited numbers of plant species and genotypes and are crucial for establishing gene editing tools on a broader scale in agriculture and plant biology. Growth conditions, including hormone and nutrient composition as well as light regimes in key steps of known regeneration protocols, display significant variations, even between the genotypes within the same species, e.g.
View Article and Find Full Text PDFPotato, is a highly diverse tetraploid crop. Elite cultivars are extremely heterozygous with a high prevalence of small length polymorphisms (indels) and single nucleotide polymorphisms (SNPs) within and between cultivars, which must be considered in CRISPR/Cas gene editing strategies and designs to obtain successful gene editing. In the present study, in-depth sequencing of the gene encoding glucan water dikinase (GWD) 1 and the downy mildew resistant 6 (DMR6-1) genes in the potato cultivars Saturna and Wotan, respectively, revealed both indels and a 1.
View Article and Find Full Text PDFGene technology and editing are not only biotechnological techniques for creating new crop varieties but are also tools for researchers to discover gene functions. Field trial following laboratory experiments is an important step in order to evaluate new functions since many phenotypes, and combinations thereof, are difficult to detect in controlled environments and molecular analyses are nowadays possible to do in the field. Here we describe a standard protocol for creating new potato lines and producing seed tubers for field trials within 1 year.
View Article and Find Full Text PDFThe use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes.
View Article and Find Full Text PDFPotato () is among the best producers of edible biomass in terms of yield per hectare and a variety of different regional cultivars are used as a staple commodity in many countries. However, this crop is attacked by several diseases, with the worst being the late blight disease caused by . Stacking of resistance (R) genes from wild relatives are interesting prospects for the sustainable control of late blight.
View Article and Find Full Text PDFCyclic lipopeptides (CLPs) are synthesized by nonribosomal peptide synthetases (NRPS), which are often flanked by LuxR-type transcriptional regulators. Pseudomonas sp. CMR12a, an effective biocontrol strain, produces two different classes of CLPs namely sessilins and orfamides.
View Article and Find Full Text PDFOrfamide-type cyclic lipopeptides (CLPs) are biosurfactants produced by Pseudomonas and involved in lysis of oomycete zoospores, biocontrol of Rhizoctonia and insecticidal activity against aphids. In this study, we compared the biosynthesis, structural diversity, in vitro and in planta activities of orfamides produced by rhizosphere-derived Pseudomonas protegens and related Pseudomonas species. Genetic characterization together with chemical identification revealed that the main orfamide compound produced by the P.
View Article and Find Full Text PDFBurkholderia is an important genus encompassing a variety of species, including pathogenic strains as well as strains that promote plant growth. We have carried out a global strategy, which combined two complementary approaches. The first one is genome guided with deep analysis of genome sequences and the second one is assay guided with experiments to support the predictions obtained in silico.
View Article and Find Full Text PDFWe investigated the role of phenazines and cyclic lipopeptides (CLPs) (orfamides and sessilins), antagonistic metabolites produced by Pseudomonas sp. CMR12a, in the biological control of damping-off disease on Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani AG 2-1 and root rot disease on bean (Phaseolus vulgaris L.) caused by R.
View Article and Find Full Text PDFPseudomonas CMR12a is a biocontrol strain that produces phenazine antibiotics and as yet uncharacterized cyclic lipopeptides (CLPs). The CLPs of CMR12a were studied by chemical structure analysis and in silico analysis of the gene clusters encoding the non-ribosomal peptide synthetases responsible for CLP biosynthesis. CMR12a produces two different classes of CLPs: orfamides B, D and E, whereby the latter two represent new derivatives of the orfamide family, and sessilins A-C.
View Article and Find Full Text PDFIron is an essential element for most living organisms, and pathogens are likely to compete with their hosts for the acquisition of this element. The bacterial plant pathogen Dickeya dadantii has been shown to require its siderophore-mediated iron uptake system for systemic disease progression on several host plants, including Arabidopsis thaliana. In this study, we investigated the effect of the iron status of Arabidopsis on the severity of disease caused by D.
View Article and Find Full Text PDF