The operating principle of conventional water electrolysis using heterogenous catalysts has been primarily focused on the unidirectional charge transfer within the heterostructure. Herein, multidirectional charge transfer concept has been adopted within heterostructured catalysts to develop an efficient and robust bifunctional water electrolysis catalyst, which comprises perovskite oxides (LaSrCoO, LSC) and potassium ion-bonded MoSe (K-MoSe). The complementary charge transfer from LSC and K to MoSe endows MoSe with the electron-rich surface and increased electrical conductivity, which improves the hydrogen evolution reaction (HER) kinetics.
View Article and Find Full Text PDFThe crystalline phase of layered transition metal dichalcogenides (TMDs) directly determines their material property. The most thermodynamically stable phase structures in TMDs are the semiconducting 2H and metastable metallic 1T phases. To overcome the low phase purity and instability of 1T-TMDs, which limits the utilization of their intrinsic properties, various synthesis strategies for 1T-TMDs have been proposed in phase-engineering studies.
View Article and Find Full Text PDFThe functionalization of graphene has been extensively used as an effective route for modulating the surface property of graphene, and enhancing the dispersion stability of graphene in aqueous solutions via functionalization has been widely investigated to expand its use for various applications across a range of fields. Herein, an effective approach is described for enhancing the dispersibility of graphene in aqueous solutions at different pH levels via non-covalent zwitterion functionalization. The results show that a surfactant with electron-deficient carbon atoms in its backbone structure and large π-π interactive area enables strong interactions with graphene, and the zwitterionic side terminal groups of the molecule support the dispersibility of graphene in various pH conditions.
View Article and Find Full Text PDFSignificant research efforts are currently being devoted to improving both the crystalline quality and stability of lead halide perovskite absorbers to advance the commercial prospects of perovskite-based solar cells. Herein, we report a simple one-step dibutylhydroxytoluene (BHT) additive-based approach for simultaneously improving the crystallinity and resistance of perovskite films under adverse degradation conditions. We found that BHT, commonly known for its antioxidant properties, can considerably improve the performance of methylammonium lead iodide perovskite solar cells by modulating the chemical environment within the precursor medium to form intermediate complexes, and it can also suppress photooxidation, which results in perovskite degradation under environmental operating conditions.
View Article and Find Full Text PDFDeveloping efficient bifunctional catalysts for overall water splitting that are earth-abundant, cost-effective, and durable is of considerable importance from the practical perspective to mitigate the issues associated with precious metal-based catalysts. Herein, we introduce a heterostructure comprising perovskite oxides (LaSrCoO) and molybdenum diselenide (MoSe) as an electrochemical catalyst for overall water electrolysis. Interestingly, formation of the heterostructure of LaSrCoO and MoSe induces a local phase transition in MoSe, 2 H to 1 T phase, and more electrophilic LaSrCoO with partial oxidation of the Co cation owing to electron transfer from Co to Mo.
View Article and Find Full Text PDF