Publications by authors named "Nam Gyu Hyun"

Temperature affects the firing pattern and electrical activity of neurons in animals, eliciting diverse responses depending on neuronal cell type. However, the mechanisms underlying such diverse responses are not well understood. In the present study, we performed in vitro recording of abdominal ganglia cells of , and analyzed their burst firing patterns.

View Article and Find Full Text PDF

Many electrophysiological properties of neuron including firing rates and rhythmical oscillation change in response to a temperature variation, but the mechanism underlying these correlations remains unverified. In this study, we analyzed various action potential (AP) parameters of bursting pacemaker neurons in the abdominal ganglion of Aplysia juliana to examine whether or not bursting patterns are altered in response to temperature change. Here we found that the inter-burst interval, burst duration, and number of spike during burst decreased as temperature increased.

View Article and Find Full Text PDF

We performed experiments using Aplysia neurons to identify the mechanism underlying the changes in the firing patterns in response to temperature changes. When the temperature was gradually increased from 11℃ to 31℃ the firing patterns changed sequentially from the silent state to beating, doublets, beating-chaos, bursting-chaos, square-wave bursting, and bursting-oscillation patterns. When the temperature was decreased over the same temperature range, these sequential changes in the firing patterns reappeared in reverse order.

View Article and Find Full Text PDF

Although the effects of temperature changes on the activity of neurons have been studied in Aplysia, the reproducibility of the temperature dependence of the action potential (AP) parameters has not been verified. To this end, we performed experiments using Aplysia neurons. Fourteen AP parameters were analyzed using the long-term data series recorded during the experiments.

View Article and Find Full Text PDF

Ketosteroid isomerase (KSI) from Pseudomonas putida biotype B is a homodimeric enzyme catalyzing an allylic isomerization of Delta(5)-3-ketosteroids at a rate of the diffusion-controlled limit. The dimeric interactions mediated by Arg72, Glu118, and Asn120, which are conserved in the homologous KSIs, have been characterized in an effort to investigate the roles of the conserved interface residues in stability, function and structure of the enzyme. The interface residues were replaced with alanine to generate the interface mutants R72A, E118A, N120A and E118A/N120A.

View Article and Find Full Text PDF

KSI (ketosteroid isomerase) from Comamonas testosteroni is a homodimeric enzyme that catalyses the allylic isomerization of Delta5-3-ketosteroids to their conjugated Delta4-isomers at a reaction rate equivalent to the diffusion-controlled limit. Based on the structural analysis of KSI at a high resolution, the conserved cis-Pro39 residue was proposed to be involved in the proper positioning of Asp38, a critical catalytic residue, since the residue was found not only to be structurally associated with Asp38, but also to confer a structural rigidity on the local active-site geometry consisting of Asp38, Pro39, Val40, Gly41 and Ser42 at the flexible loop between b-strands B1 and B2. In order to investigate the structural role of the conserved cis-Pro39 residue near the active site of KSI, Pro39 was replaced with alanine or glycine.

View Article and Find Full Text PDF

Two homologous Delta5-3-ketosteroid isomerases from Comamonas testosteroni (TI-WT) and Pseudomonas putida biotype B (PI-WT) exhibit different pH activity profiles. TI-WT loses activity below pH 5.0 due to the protonation of the conserved catalytic base, Asp-38, while PI-WT does not.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) has been known to induce tumor-specific apoptosis and to share the structural and functional characteristics with the proteins of TNF family. Recently, the crystal structure of human TRAIL showed that TRAIL is a homotrimeric protein whose subunits contain mainly beta-sheets. We characterized the structural changes of recombinant human TRAIL induced by acidification and the biological implication of the structural characteristics at acidic pH in the interaction with the lipid bilayer.

View Article and Find Full Text PDF