Background: Coronary artery disease (CAD) is a multifactorial condition with both genetic and exogenous causes. The contribution of tissue-specific functional networks to the development of atherosclerosis remains largely unclear. The aim of this study was to identify and characterize central regulators and networks leading to atherosclerosis.
View Article and Find Full Text PDFIn the version of this article originally published, minus signs were missing from the three β-values for BMI given in Table 1. The errors have been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDFInter-tissue communication via secreted proteins has been established as a vital mechanism for proper physiologic homeostasis. Here, we report a bioinformatics framework using a mouse reference population, the Hybrid Mouse Diversity Panel (HMDP), which integrates global multi-tissue expression data and publicly available resources to identify and functionally annotate novel circuits of tissue-tissue communication. We validate this method by showing that we can identify known as well as novel endocrine factors responsible for communication between tissues.
View Article and Find Full Text PDFIndividual risk of type 2 diabetes (T2D) is modified by perturbations to the mass, distribution and function of adipose tissue. To investigate the mechanisms underlying these associations, we explored the molecular, cellular and whole-body effects of T2D-associated alleles near KLF14. We show that KLF14 diabetes-risk alleles act in adipose tissue to reduce KLF14 expression and modulate, in trans, the expression of 385 genes.
View Article and Find Full Text PDFThe etiology of non-alcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, is poorly understood. To understand the causal mechanisms underlying NAFLD, we conducted a multi-omics, multi-tissue integrative study using the Hybrid Mouse Diversity Panel, consisting of ∼100 strains of mice with various degrees of NAFLD. We identified both tissue-specific biological processes and processes that were shared between adipose and liver tissues.
View Article and Find Full Text PDFEmerging evidence suggests that microbes resident in the human intestine represent a key environmental factor contributing to obesity-associated disorders. Here, we demonstrate that the gut microbiota-initiated trimethylamine N-oxide (TMAO)-generating pathway is linked to obesity and energy metabolism. In multiple clinical cohorts, systemic levels of TMAO were observed to strongly associate with type 2 diabetes.
View Article and Find Full Text PDFTo identify genetic and environmental factors contributing to the pathogenesis of non-alcoholic fatty liver disease, we examined liver steatosis and related clinical and molecular traits in more than 100 unique inbred mouse strains, which were fed a diet rich in fat and carbohydrates. A >30-fold variation in hepatic TG accumulation was observed among the strains. Genome-wide association studies revealed three loci associated with hepatic TG accumulation.
View Article and Find Full Text PDFWe performed silencing and overexpression studies of flavin containing monooxygenase (FMO) 3 in hyperlipidemic mouse models to examine its effects on trimethylamine N-oxide (TMAO) levels and atherosclerosis. Knockdown of hepatic FMO3 in LDL receptor knockout mice using an antisense oligonucleotide resulted in decreased circulating TMAO levels and atherosclerosis. Surprisingly, we also observed significant decreases in hepatic lipids and in levels of plasma lipids, ketone bodies, glucose, and insulin.
View Article and Find Full Text PDFExposure of endothelial cells (ECs) to agents such as oxidized glycerophospholipids (oxGPs) and cytokines, known to accumulate in atherosclerotic lesions, perturbs the expression of hundreds of genes in ECs involved in inflammatory and other biological processes. We hypothesized that microRNAs (miRNAs) are involved in regulating the inflammatory response in human aortic endothelial cells (HAECs) in response to oxGPs and interleukin 1β (IL-1β). Using next-generation sequencing and RT-quantitative PCR, we characterized the profile of expressed miRNAs in HAECs pre- and postexposure to oxGPs.
View Article and Find Full Text PDFBackground: DNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While the variation of DNA methylation among individuals has been partially characterized, the degree to which methylation patterns are preserved across generations is still poorly understood. To determine the extent of methylation differences between two generations of mice we examined DNA methylation patterns in the livers of eight parental and F1 mice from C57BL/6J and DBA/2J mouse strains using bisulfite sequencing.
View Article and Find Full Text PDFWe profiled and analyzed 283 metabolites representing eight major classes of molecules including Lipids, Carbohydrates, Amino Acids, Peptides, Xenobiotics, Vitamins and Cofactors, Energy Metabolism, and Nucleotides in mouse liver of 104 inbred and recombinant inbred strains. We find that metabolites exhibit a wide range of variation, as has been previously observed with metabolites in blood serum. Using genome-wide association analysis, we mapped 40% of the quantified metabolites to at least one locus in the genome and for 75% of the loci mapped we identified at least one candidate gene by local expression QTL analysis of the transcripts.
View Article and Find Full Text PDFMany common diseases have an important inflammatory component mediated in part by macrophages. Here we used a systems genetics strategy to examine the role of common genetic variation in macrophage responses to inflammatory stimuli. We examined genome-wide transcript levels in macrophages from 92 strains of the Hybrid Mouse Diversity Panel.
View Article and Find Full Text PDFRationale: Oxidized palmitoyl arachidonyl phosphatidylcholine (Ox-PAPC) accumulates in atherosclerotic lesions, is proatherogenic, and influences the expression of more than 1000 genes in endothelial cells.
Objective: To elucidate the major pathways involved in Ox-PAPC action, we conducted a systems analysis of endothelial cell gene expression after exposure to Ox-PAPC.
Methods And Results: We used the variable responses of primary endothelial cells from 149 individuals exposed to Ox-PAPC to construct a network that consisted of 11 groups of genes, or modules.
Objective: To test the hypothesis that NF-E2-related factor 2 (Nrf2) expression plays an antiatherogenic role by its vascular antioxidant and anti-inflammatory properties.
Methods And Results: Nrf2 is an important transcription factor that regulates the expression of phase 2 detoxifying enzymes and antioxidant genes. Its expression in vascular cells appears to be an important factor in the protection against vascular oxidative stress and inflammation.
Copy number variants (CNVs) are genomic segments which are duplicated or deleted among different individuals. CNVs have been implicated in both Mendelian and complex traits, including immune and behavioral disorders, but the study of the mechanisms by which CNVs influence gene expression and clinical phenotypes in humans is complicated by the limited access to tissues and by population heterogeneity. We now report studies of the effect of 19 CNVs on gene expression and metabolic traits in a mouse intercross between strains C57BL/6J and C3H/HeJ.
View Article and Find Full Text PDFMyotonic dystrophy (DM), the most common adult-onset muscular dystrophy, is caused by CTG or CCTG microsatellite repeat expansions. Expanded DM mRNA microsatellite repeats are thought to accumulate in the nucleus, sequester Muscleblind proteins, and interfere with alternative mRNA splicing. Muscleblind2 (Mbnl2) is a member of the family of Muscleblind RNA binding proteins (that also include Mbnl1 and Mbnl3) that are known to bind CTG/CCTG RNA repeats.
View Article and Find Full Text PDFThe genetic factors contributing to the complex disorder of myocardial calcification are largely unknown. Using a mouse model, we fine-mapped the major locus (Dyscalc1) contributing to the dystrophic cardiac calcification (DCC) to an 840-kb interval containing 38 genes. We then identified the causal gene by using an approach integrating genetic segregation and expression array analyses to identify, on a global scale, cis-acting DNA variations that perturb gene expression.
View Article and Find Full Text PDFSmooth muscle gene expression is required for the proper development and function of multiple organ systems. Expression of smooth muscle genes is critical for contractile function and tissue architectural integrity. One critical transcription factor for smooth muscle gene expression is the Serum Response Factor (SRF).
View Article and Find Full Text PDFTreating messenger RNA transcript abundances as quantitative traits and mapping gene expression quantitative trait loci for these traits has been pursued in gene-specific ways. Transcript abundances often serve as a surrogate for classical quantitative traits in that the levels of expression are significantly correlated with the classical traits across members of a segregating population. The correlation structure between transcript abundances and classical traits has been used to identify susceptibility loci for complex diseases such as diabetes and allergic asthma.
View Article and Find Full Text PDF