Publications by authors named "Nallaret Davila Cardozo"

Tropical forests face increasing climate risk, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]) and hydraulic safety margins (for example, HSM) are important predictors of drought-induced mortality risk, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation.

View Article and Find Full Text PDF

The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the uncertainty in how tropical forests' carbon storage responds to climate change, particularly the effects of long-term drying and warming.
  • Analysis of 590 permanent plots across the tropics finds that maximum temperature significantly reduces aboveground biomass, affecting carbon storage more in hotter forests.
  • The results indicate that tropical forests have greater resilience to temperature changes than short-term studies suggest, emphasizing the need for forest protection and climate stabilization for long-term adaptation.
View Article and Find Full Text PDF

Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years.

View Article and Find Full Text PDF

*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought.

View Article and Find Full Text PDF

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events.

View Article and Find Full Text PDF