Publications by authors named "Nalinee Chongjaroen"

Maturity-onset diabetes of the young type 3 (MODY3) is caused by mutations in a gene encoding transcription factor hepatocyte nuclear factor 1-alpha (HNF1A). Although the roles of HNF1A in regulation of hepatic and pancreatic genes to maintain glucose homeostasis were investigated, the functions of HNF1A are not completely elucidated. To better understand the functions of HNF1A, we characterized mutations of HNF1A in Thai MODY3 patients and studied the functions of wild-type HNF1A and variant proteins.

View Article and Find Full Text PDF

Background: Several type 2 diabetes (T2D) susceptibility loci identified via genome-wide association studies were found to be replicated among various populations. However, the influence of these loci on T2D in Thai population is unknown. The aim of this study was to investigate the influence of eight single nucleotide polymorphisms (SNPs) reported in GWA studies on T2D and related quantitative traits in Thai population.

View Article and Find Full Text PDF

We have previously identified PAX4 mutations causing MODY9 and a recent genome-wide association study reported a susceptibility locus of type 2 diabetes (T2D) near PAX4. In this study, we aim to investigate the association between PAX4 polymorphisms and T2D in Thai patients and examine functions of PAX4 variant proteins. PAX4 rs2233580 (R192H) and rs712701 (P321H) were genotyped in 746 patients with T2D and 562 healthy normal control subjects by PCR and restriction-fragment length polymorphism method.

View Article and Find Full Text PDF

Aims: Paired box 4 (PAX4) mutations cause maturity-onset diabetes of the young, type 9 (MODY9). The molecular defect and alteration of PAX4 function associated with the mutation PAX4 IVS7-1G>A in a family with MODY9 and severe diabetic complications were studied.

Methods: We investigated the functional consequences of PAX4 IVS7-1G>A on mRNA splicing using minigene assays.

View Article and Find Full Text PDF

ADIPOQ, encoding adiponectin, is a candidate gene for type 2 diabetes (T2D) identified by genome-wide linkage analyses with supporting evidence showing the protein function in sensitizing insulin actions. In an endeavor to characterize candidate genes causing T2D in Thai patients, we identified 10 novel ADIPOQ variations, several of which were non-synonymous variations observed only in the patients. To examine the impact of these non-synonymous variations on adiponectin structure and biochemical characteristics, we conducted a structural analysis of the wild-type and variant proteins by in silico modeling and further characterized biochemical properties of the variants with predicted structural abnormalities from the modeling by molecular and biochemical studies.

View Article and Find Full Text PDF

A novel frameshift mutation attributable to 14-nucleotide insertion in hepatocyte nuclear factor-1alpha (HNF-1alpha) encoding a truncated HNF-1alpha (G554fsX556) with 76-amino acid deletion at its carboxyl terminus was identified in a Thai family with maturity-onset diabetes of the young (MODY). The wild-type and mutant HNF-1alpha proteins were expressed by in vitro transcription and translation (TNT) assay and by transfection in HeLa cells. The wild-type and mutant HNF-1alpha could similarly bind to human glucose-transporter 2 (GLUT2) promoter examined by electrophoretic mobility shift assay (EMSA).

View Article and Find Full Text PDF

Objective: Six known genes responsible for maturity-onset diabetes of the young (MODY) were analysed to evaluate the prevalence of their mutations in Thai patients with MODY and early-onset type 2 diabetes.

Patients And Methods: Fifty-one unrelated probands with early-onset type 2 diabetes, 21 of them fitted into classic MODY criteria, were analysed for nucleotide variations in promoters, exons, and exon-intron boundaries of six known MODY genes, including HNF-4alpha, GCK, HNF-1alpha, IPF-1, HNF-1beta, and NeuroD1/beta2, by the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method followed by direct DNA sequencing. Missense mutations or mutations located in regulatory region, which were absent in 130 chromosomes of non-diabetic controls, were classified as potentially pathogenic mutations.

View Article and Find Full Text PDF