Pretreatment processes - recognized as critical steps for efficient biomass refining - have received much attention over the last two decades. In this context, deep eutectic solvents (DES) have emerged as a novel alternative to conventional solvents representing a step forward in achieving more sustainable processes with both environmental and economic benefits. This paper presents an updated review of the state-of-the-art of DES-based applications in biorefinery schemes.
View Article and Find Full Text PDFPolysaccharide-based microgels have broad applications in multi-parametric cell cultures, cell-free biotechnology, and drug delivery. Multicomponent reactions like the Passerini three-component and the Ugi four-component reaction are shown in here to be versatile platforms for fabricating these polysaccharide microgels by droplet microfluidics with a narrow size distribution. While conventional microgel formation requires pre-modification of hydrogel building blocks to introduce certain functionality, in multicomponent reactions one building block can be simply exchanged by another to introduce and extend functionality in a library-like fashion.
View Article and Find Full Text PDFHerein, a new Ugi multicomponent reaction strategy is described to enhance activity and solubility of the chemotherapeutic drug chlorambucil through its conjugation to poly(amidoamine) (PAMAM-NH₂) dendrimers with the simultaneous introduction of lipidic (-Pr) and cationic (⁻NH₂) or anionic (⁻COOH) groups. Standard viability assays were used to evaluate the anticancer potential of the water-soluble dendrimers against PC-3 prostate and HT-29 colon cancer cell lines, as well as non-cancerous mouse NIH3T3 fibroblasts. It could be demonstrated that the anticancer activity against PC-3 cells was considerably improved when both chlorambucil and ⁻NH₂ (cationic) groups were present on the dendrimer surface ().
View Article and Find Full Text PDFAiming at providing an efficient and versatile method for the diversity-oriented decoration and ligation of fullerenes, we report the first C derivatization strategy based on isocyanide-multicomponent reactions (I-MCRs). The approach comprises the use of Passerini and Ugi reactions for assembling pseudo-peptidic scaffolds (i.e.
View Article and Find Full Text PDF