In many organisms (e.g., gram-positive eubacteria) Gin-tRNA is not formed by direct glutaminylation of tRNAGln but by a specific transamidation of Glu-tRNAGln.
View Article and Find Full Text PDFIn order to gain insight into the conservation of determinants for tRNA identity between organisms, Schizosaccharomyces pombe and human amber suppressor serine tRNA genes have been examined for functional expression in Escherichia coli. The primary transcripts, which originated from E. coli plasmid promoters, were processed into mature tRNAs, but they were poorly aminoacylated in E.
View Article and Find Full Text PDFWe have determined the nucleotide sequence of ribosomal 5S RNA from bovine liver. The comparison of this sequence with those from other eukaryotic sources shows that a common secondary structure model for all eukaryotic 5S rRNAs may exist. Analysis of the evolutionary conserved nucleotides in metazoan 5S rRNAs suggests that the tertiary interactions, proposed earlier for plant 5S rRNA, are also possible.
View Article and Find Full Text PDFA new nuclease (Rn) isolated from rye nucleus was applied for the structural studies of methionine initiator transfer ribonucleic acid and ribosomal 5S rRNA from yellow lupin seeds. The enzyme shows high specificity for some regions of both RNAs. The dihydrouridine and ribothymidine loops which are supposed to be involved in the tertiary interactions of the methionine initiator tRNA were hydrolysed.
View Article and Find Full Text PDFA new model of secondary and tertiary structure of higher plant 5S RNA is proposed. It consists of three helical domains: domain alpha includes stem I; domain beta contains stems II and III and loops B and C; domain gamma consists of stems IV and V and loops D and E. Except for, presumably, a canonical RNA-A like domain alpha, the two remaining domains apparently adopt a perturbed RNA-A structure due to irregularities within internal loops B and E and three bulges occurring in the model.
View Article and Find Full Text PDFThe nucleotide sequence of Pinus silvestyris 5S rRNA was determined using two independent methods and compared with other plant 5S rRNAs. It shows more than 90% sequence homology with gymnosperm 5S RNAs. The free energy (delta G) analysis of 5S rRNAs from gymnosperms, angiosperms and the other higher plants revealed that the free energy of this ribosomal RNA decreases with evolution.
View Article and Find Full Text PDFA new model of secondary and tertiary structure of higher plant 5S rRNA is proposed. It consists of three domains. Domain alpha includes stem I and loop A; domain beta contains stems II and III and loops B and C; domain gamma consists of stems IV and V and loops D and E.
View Article and Find Full Text PDFThe complete nucleotide sequence of R. meliloti 5S ribosomal RNA has been determined and compared with the already known sequence of A. tumefaciens 5S rRNA (Vandenberghe et al.
View Article and Find Full Text PDFUsing commercially available computer software package for ribonucleic acid (RNA) secondary structure analysis we calculated the free energy (delta G) of all higher plant 5S rRNA species. To gain insight into the relation between structure (nucleotide sequence) and free energy we generated point mutants of plant 5S rRNA and calculated their secondary structure. This analysis permitted to identify single sites which affect the stability and conformation of RNA molecule.
View Article and Find Full Text PDF