Publications by authors named "Nalam V"

Background: Sugar beets (Beta vulgaris L.) are grown worldwide and suffer economic loss annually due to curly top disease caused by the beet curly top virus (BCTV). The virus is spread by the beet leafhopper (BLH), Circulifer tenellus Baker.

View Article and Find Full Text PDF
Article Synopsis
  • Curly top disease is a serious illness that affects sugar beets and is caused by a virus that spreads through a tiny bug called the beet leafhopper.
  • This study shows that the infected beet leafhoppers have more babies but might move around less because the virus changes what happens in their bodies.
  • The research gives new information about how this virus affects the bugs, which could help scientists find better ways to manage the problems caused by curly top disease.
View Article and Find Full Text PDF

Durable host plant resistance (HPR) to insect pests is critical for sustainable agriculture. Natural variation exists for aphid HPR in sorghum (Sorghum bicolor), but the genetic architecture and phenotype have not been clarified and characterized for most sources. In order to assess the current threat of a sorghum aphid (Melanaphis sorghi) biotype shift, we characterized the phenotype of Resistance to Melanaphis sorghi 1 (RMES1) and additional HPR architecture in globally admixed populations selected under severe sorghum aphid infestation in Haiti.

View Article and Find Full Text PDF

MYZUS PERSICAE-INDUCED LIPASE1 (MPL1) encodes a lipase in Arabidopsis thaliana that is required for limiting infestation by the green peach aphid (GPA; Myzus persicae), an important phloem sap-consuming insect pest. Previously, we demonstrated that MPL1 expression was up-regulated in response to GPA infestation, and GPA fecundity was higher on the mpl1 mutant, compared with the wild-type (WT), and lower on 35S:MPL1 plants that constitutively expressed MPL1 from the 35S promoter. Here, we show that the MPL1 promoter is active in the phloem and expression of the MPL1 coding sequence from the phloem-specific SUC2 promoter in mpl1 is sufficient to restore resistance to GPA.

View Article and Find Full Text PDF

Unlabelled: Using wearable robotics to modulate step width in normal walking for enhanced mediolateral balance has not been demonstrated in the field. We designed a bilateral hip exoskeleton with admittance control to power hip abduction and adduction to modulate step width.

Objective: As the first step to show its potential, the objective of this study was to investigate how human's step width reacted to hip exoskeleton's admittance control parameter changes during walking.

View Article and Find Full Text PDF

This paper presents a twin dual-axis robotic platform system which is designed for the characterization of postural balance under various environmental conditions and quantification of bilateral ankle mechanics in 2 degrees-of-freedom (DOF) during standing and walking. Methods: Validation experiments were conducted to evaluate performance of the system: 1) to apply accurate position perturbations under different loading conditions; 2) to simulate a range of stiffness-defined mechanical environments; and 3) to reliably quantify the joint impedance of mechanical systems. In addition, several human experiments were performed to demonstrate the system's applicability for various lower limb biomechanics studies.

View Article and Find Full Text PDF

The tuning of robotic prosthesis control is essential to provide personalized assistance to individual prosthesis users. Emerging automatic tuning algorithms have shown promise to ease the device personalization procedure. However, very few automatic tuning algorithms consider the user preference as the tuning goal, which may limit the adoptability of the robotic prosthesis.

View Article and Find Full Text PDF

Wheat streak mosaic virus (WSMV) is an economically important viral pathogen that threatens global wheat production, particularly in the Great Plains of the United States. The locus confers resistance to WSMV and has been widely deployed in common wheat varieties adapted to this region. Characterizing the underlying causative genetic variant would contribute to our understanding of viral resistance mechanisms in wheat and aid the development of perfect markers for breeding.

View Article and Find Full Text PDF

Aphids are the most prolific vectors of plant viruses resulting in significant yield losses to crops worldwide. Potato virus Y (PVY) is transmitted in a non-persistent manner by 65 species of aphids. With the increasing acreage of hemp (Cannabis sativa L.

View Article and Find Full Text PDF

Pangenome analyses are increasingly being utilized to study the evolution of eukaryotic organisms. While pangenomes can provide insight into polymorphic gene content, inferences about the ecological and adaptive potential of such organisms also need to be accompanied by additional supportive genomic analyses. In this study we constructed a pangenome of Claviceps purpurea from 24 genomes and examined the positive selection and recombination landscape of an economically important fungal organism for pharmacology and agricultural research.

View Article and Find Full Text PDF

Ash ( spp.) is one of the most widely distributed tree genera in North America. Populations of ash in the United States and Canada have been decimated by the introduced pest (Coleoptera: Buprestidae; emerald ash borer), having negative impacts on both forest ecosystems and economic interests.

View Article and Find Full Text PDF

The soybean aphid () continues to threaten soybean production in the United States. A suite of management strategies, such as planting aphid-resistant cultivars, has been successful in controlling soybean aphids. Several genes (resistance against ) have been identified, and two are currently being deployed in commercial soybean cultivars.

View Article and Find Full Text PDF

Aphid feeding behavior and performance on a given host plant are influenced by the plants' physical and chemical traits, including structural characters such as trichomes and nutritional composition. In this study, we determined the feeding behavior and performance of soybean aphids (Aphis glycines) on the stem, the adaxial (upper), and the abaxial (lower) leaf surfaces during early vegetative growth of soybean plants. Using the electrical penetration graph technique, we found that aphids feeding on the stem took the longest time to begin probing.

View Article and Find Full Text PDF

The genus Claviceps has been known for centuries as an economically important fungal genus for pharmacology and agricultural research. Only recently have researchers begun to unravel the evolutionary history of the genus, with origins in South America and classification of four distinct sections through ecological, morphological, and metabolic features (Claviceps sects. Citrinae, Paspalorum, Pusillae, and Claviceps).

View Article and Find Full Text PDF

The purpose of this study is to quantify sex differences in 2-dimensional (2D) ankle stiffness during upright standing balance and investigate the mechanisms for the differences. A dual-axis robotic platform, capable of perturbing the ankle and measuring the corresponding ankle torques in both the sagittal and frontal planes, was used to reliably quantify the 2D ankle stiffness while healthy young human subjects perform a range of standing balance tasks, specifically, ankle muscle co-contraction tasks, weight-bearing tasks, and ankle torque generation tasks. In all task conditions and in both planes of ankle motion, ankle stiffness in males was consistently greater than that in females.

View Article and Find Full Text PDF

Objective: This study investigates the factors contributing to the modulation of ankle stiffness during standing balance and evaluates the reliability of linear stiffness models.

Methods: A dual-axis robotic platform and a visual feedback display were used to quantify ankle stiffness in both the sagittal and frontal planes while subjects controlled different levels of ankle muscle co-contraction, center-of-pressure (CoP), and loading on the ankle.

Results: Results of 40 subjects demonstrated that ankle stiffness in the sagittal plane linearly increased with the increasing level of these three factors.

View Article and Find Full Text PDF

Diurnal variation in phloem sap composition has a strong influence on aphid performance. The sugar-rich phloem sap serves as the sole diet for aphids and a suite of physiological mechanisms and behaviors allow them to tolerate the high osmotic stress. Here, we tested the hypothesis that night-time feeding by aphids is a behavior that takes advantage of the low sugar diet in the night to compensate for osmotic stress incurred while feeding on high sugar diet during the day.

View Article and Find Full Text PDF

Soybean vein necrosis virus (SVNV) is a newly discovered species of tospovirus infecting soybean plants that is transmitted by the primary vector, soybean thrips (), and two additional secondary vectors, tobacco thrips () and eastern flower thrips (). This study was undertaken to elucidate the association between virus acquisition [6, 12, 24, and 48 h acquisition access period (AAP)] and transmission efficiency [12, 24, and 48 h inoculation access period (IAP)] in the primary vector, , and to examine the mechanisms of vector competence by analyzing the effect of AAP (6, 12, and 24 h) on virus infection in various tissues. In addition, we examined virus infection in tissues of the two secondary vectors.

View Article and Find Full Text PDF

Aphids are amongst the most damaging pests of plants that use their stylets to penetrate the plant tissue to consume large amounts of phloem sap and thus deprive the plant of photoassimilates. In addition, some aphids vector important viral diseases of plants. Plant defenses targeting aphids are broadly classified as antibiosis, which interferes with aphid growth, survival and fecundity, and antixenosis, which influences aphid behavior, including plant choice and feeding from the sieve elements.

View Article and Find Full Text PDF

Aphids constitute a large group of Hemipterans that use their slender stylets to tap into the sieve elements of plants from which they consume copious amounts of phloem sap, thus depriving the plant of photoassimilates. Some aphids also transmit viral diseases of plants. Sülzer, commonly known as the green peach aphid (GPA), which is a polyphagous insect with a host range that covers 50 plant families, is considered amongst the top 3 insect pest of plants.

View Article and Find Full Text PDF

Insect endosymbionts (hereafter, symbionts) can modify plant virus epidemiology by changing the physiology or behavior of vectors, but their role in nonpersistent virus pathosystems remains uninvestigated. Unlike propagative and circulative viruses, nonpersistent plant virus transmission occurs via transient contamination of mouthparts, making direct interaction between symbiont and virus unlikely. Nonpersistent virus transmission occurs during exploratory intracellular punctures with styletiform mouthparts when vectors assess potential host-plant quality prior to phloem feeding.

View Article and Find Full Text PDF

The actin cytoskeleton network has an important role in plant cell growth, division, and stress response. Actin-depolymerizing factors (ADFs) are a group of actin-binding proteins that contribute to reorganization of the actin network. Here, we show that the Arabidopsis () is required in the phloem for controlling infestation by Sülzer, commonly known as the green peach aphid (GPA), which is an important phloem sap-consuming pest of more than fifty plant families.

View Article and Find Full Text PDF