Existing weather forecasting models are based on physics and use supercomputers to evolve the atmosphere into the future. Better physics-based forecasts require improved atmospheric models, which can be difficult to discover and develop, or increasing the resolution underlying the simulation, which can be computationally prohibitive. An emerging class of weather models based on neural networks overcome these limitations by learning the required transformations from data instead of relying on hand-coded physics and by running efficiently in parallel.
View Article and Find Full Text PDFThe game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses 'value networks' to evaluate board positions and 'policy networks' to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play.
View Article and Find Full Text PDF