Chirality has been identified as a crucial component in achieving high spin selectivity in organic polymers and π-conjugated molecules. In particular, chiral polymers and supramolecular structures have emerged as promising candidates for spin filtering due to the chirality-induced spin selectivity (CISS) effect. However, the CISS effect in supramolecular systems has not been extensively investigated, despite its potential for applications in spintronics.
View Article and Find Full Text PDFThe cooperativity in artificial self-assembling systems can be enhanced to expand their applications and redesign their properties. Recently, chiral molecules have garnered renewed attention due to their potential as highly efficient spin filters through the chiral-induced spin selectivity (CISS) effect. However, the potential of asymmetric building blocks based on chiral perylene diimides (PDIs) self-assembled materials to generate a spin-polarized current is still not widely acknowledged.
View Article and Find Full Text PDFLiterature studies on the effects of alkyne functionality in manipulating the optical properties of donor-π-acceptor-type molecular scaffolds have been scarce compared to those on the alkene functional group. Here, two structurally isomeric donor-acceptor (D-A) dyes were synthesized to study the positional effect of alkyne functionality (triple bond) on their optical, electrochemical and charge generation properties in order to design efficient dyes for possible application in dye sensitized solar cells (DSSCs). These dyes, named CAPC and PACC, contain carbazole and cyanoacrylic acid as the donor and acceptor units, respectively, and the π-conjugation length within the molecules was controlled by the introduction of an alkyne group.
View Article and Find Full Text PDFOrgano-lead halide perovskite materials have opened up a great opportunity to develop high performance photodetectors because of their superior optoelectronic properties. The main issue with perovskite-only photodetector is severe carrier recombination. Integration of perovskite with high-conductive materials such as graphene or transition metal sulfides certainly improved the photoresponsivity.
View Article and Find Full Text PDFOrgano-lead halide perovskite materials have opened up a great opportunity to develop high performance photodetectors because of their superior optoelectronic properties. The main issue with perovskite-only photodetector is severe carrier recombination. Integration of perovskite with high-conductive materials such as graphene or transition metal sulfides certainly improved the photoresponsivity.
View Article and Find Full Text PDF