Publications by authors named "Nakissa Sadrieh"

Microphysiological systems (MPS) are designed to recapitulate aspects of tissue/organ physiology in vivo, thereby providing potential value in safety and efficacy assessments of FDA-regulated products and regulatory decision-making. While there have been significant advances in the development, use, and proposals of qualification criteria for human organ MPS, there remains a gap in the development using animal tissues. Animal MPS may be of value in many areas including the study of zoonotic diseases, assessment of the safety and efficacy of animal therapeutics, and possibly reduction of the use of animals in regulatory submissions for animal therapeutics.

View Article and Find Full Text PDF

The webinar series and workshop titled “Trust Your Gut: Establishing Confidence in Gastrointestinal Models – An Overview of the State of the Science and Contexts of Use” was co-organized by NICEATM, NIEHS, FDA, EPA, CPSC, DoD, and the Johns Hopkins Center for Alternatives to Animal Testing (CAAT) and hosted at the National Institutes of Health in Bethesda, MD, USA on October 11-12, 2023. New approach methods (NAMs) for assessing issues of gastrointestinal tract (GIT)- related toxicity offer promise in addressing some of the limitations associated with animal-based assessments. GIT NAMs vary in complexity, from two-dimensional monolayer cell line-based systems to sophisticated 3-dimensional organoid systems derived from human primary cells.

View Article and Find Full Text PDF
Article Synopsis
  • * The workshop aimed to identify opportunities for standardizing MPS and finding pathways for their use in regulatory decision-making, involving representatives from the FDA and 26 global regulatory organizations.
  • * Participants agreed that while developing specific standards for every context may be challenging, creating broadly applicable standards could be a more feasible approach to enhance the acceptance of CIVM/MPS in regulatory frameworks.
View Article and Find Full Text PDF

Skin permeation is a primary consideration in the safety assessment of cosmetic ingredients, topical drugs, and human users handling veterinary medicinal products. While excised human skin (EHS) remains the 'gold standard' for in vitro permeation testing (IVPT) studies, unreliable supply and high cost motivate the search for alternative skin barrier models. In this study, a standardized dermal absorption testing protocol was developed to evaluate the suitability of alternative skin barrier models to predict skin absorption in humans.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is a major contributor to high attrition rates among candidate and market drugs and a key regulatory, industry, and global health concern. While acute and dose-dependent DILI, namely, intrinsic DILI, is predictable and often reproducible in preclinical models, the nature of idiosyncratic DILI (iDILI) limits its mechanistic understanding due to the complex disease pathogenesis, and recapitulation using in vitro and in vivo models is extremely challenging. However, hepatic inflammation is a key feature of iDILI primarily orchestrated by the innate and adaptive immune system.

View Article and Find Full Text PDF

In the United States, cosmetics are regulated under the Food, Drug, and Cosmetic Act and the Fair Packaging and Labeling Act. Accordingly, cosmetic ingredients, with the exception of color additives, are not subject to premarket approval. However, they must not be adulterated or misbranded.

View Article and Find Full Text PDF

United States regulatory and research agencies may rely upon skin sensitization test data to assess the sensitization hazards associated with dermal exposure to chemicals and products. These data are evaluated to ensure that such substances will not cause unreasonable adverse effects to human health when used appropriately. The US Consumer Product Safety Commission, the US Environmental Protection Agency, the US Food and Drug Administration, the Occupational Safety and Health Administration, the National Institute for Occupational Safety and Health, and the US Department of Defense are member agencies of the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM).

View Article and Find Full Text PDF
Article Synopsis
  • - The sunless tanning industry is growing rapidly due to increased awareness about UV radiation risks and advancements in tanning products, particularly those containing Dihydroxyacetone (DHA), which is FDA-approved as a color additive.
  • - DHA is meant for external use only and instructions advise against contact with mucous membranes and eyes; consumers should be cautious about potential ingestion or inhalation, especially in spray-tan environments.
  • - Unlike sunscreen, which protects against UV radiation, sunless tanning products are classified as cosmetics and do not offer any UV protection, highlighting the need for further research on the safety of DHA.
View Article and Find Full Text PDF

Skin sensitization risk assessment of botanical ingredients is necessary for consumers' protection and occupational hazard identification. There are currently very few available alternative methods that can assist in the evaluation of complex mixtures. Chemical methods can provide essential information in a timely manner and thus help to reduce the need for in vivo testing, and they can complement and facilitate targeted in vitro assays.

View Article and Find Full Text PDF

Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity (DTH) reaction induced by repeated contact with sensitizers. The ability of a chemical to act as a sensitizer has most frequently been tested in animals. As the use of animals for these purposes is gradually and globally being phased out, there is a need for reliable in vitro surrogate assays.

View Article and Find Full Text PDF

The purpose of this study was to investigate the in vitro dissolution performance of the different sized spray-dried nano-crystalline powders of naproxen. A DoE approach was used to formulate and optimize nano-crystalline suspensions. The critical wet milling operation parameters were i.

View Article and Find Full Text PDF

At the Product Quality Research Institute (PQRI) Workshop held last January 14-15, 2014, participants from academia, industry, and governmental agencies involved in the development and regulation of nanomedicines discussed the current state of characterization, formulation development, manufacturing, and nonclinical safety evaluation of nanomaterial-containing drug products for human use. The workshop discussions identified areas where additional understanding of material attributes, absorption, biodistribution, cellular and tissue uptake, and disposition of nanosized particles would continue to inform their safe use in drug products. Analytical techniques and methods used for in vitro characterization and stability testing of formulations containing nanomaterials were discussed, along with their advantages and limitations.

View Article and Find Full Text PDF

Purpose: This study focuses on the formulation optimization, in vitro and in vivo performance of differently sized nano-crystalline liquid suspensions and spray-dried powders of a poorly soluble BCS class II compound i.e. Danazol.

View Article and Find Full Text PDF

The objectives of the present study were to formulate and optimize different sized liquid and solid nanocrystalline formulations and evaluate their in vitro and in vivo performance to determine the effect of particle size on the oral bioavailability of solid nanocrystalline formulations. Nanotechnology is a promising approach to solve the problem of poor oral bioavailability of Biopharmaceutical Classification System class II/IV compounds. However, the highly exposed surface area of nanocrystals and hence their high Gibb's free energy poses a great challenge to nanocrystalline suspension stabilization.

View Article and Find Full Text PDF

The use of nanotechnology in medicine holds great promise for revolutionizing a variety of therapies. The past decade witnessed dramatic advancements in scientific research in nanomedicines, although significant challenges still exist in nanomedicine design, characterization, development, and manufacturing. In March 2013, a two-day symposium "Nanomedicines: Charting a Roadmap to Commercialization," sponsored and organized by the Nanomedicines Alliance, was held to facilitate better understanding of the current science and investigative approaches and to identify and discuss challenges and knowledge gaps in nanomedicine development programs.

View Article and Find Full Text PDF

Interest in pharmaceuticals in the environment has increased substantially in recent years. Several studies in particular have assessed human and ecological risks from human pharmaceutical estrogens, such as 17α-ethinyl estradiol (EE2). Regulatory action also has increased, with the USA and other countries developing rules to address estrogens and other pharmaceuticals in the environment.

View Article and Find Full Text PDF

As indicated in ICH M7 draft guidance, in silico predictive tools including statistically-based QSARs and expert analysis may be used as a computational assessment for bacterial mutagenicity for the qualification of impurities in pharmaceuticals. To address this need, we developed and validated a QSAR model to predict Salmonella t. mutagenicity (Ames assay outcome) of pharmaceutical impurities using Prous Institute's Symmetry(SM), a new in silico solution for drug discovery and toxicity screening, and the Mold2 molecular descriptor package (FDA/NCTR).

View Article and Find Full Text PDF

Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL.

View Article and Find Full Text PDF

Objective: A regulatory science priority at the Food and Drug Administration (FDA) is to promote the development of new innovative tools such as reliable and validated computational (in silico) models. This FDA Critical Path Initiative project involved the development of predictive clinical computational models for decision-support in CDER evaluations of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs.

Methods: Several classification models were built using predictive technologies of quantitative structure-activity relationship analysis using clinical in-house and public data on induction of QT prolongation and torsade de pointes (TdP) in humans.

View Article and Find Full Text PDF

The Nanotechnology Risk Assessment Working Group in the Center for Drug Evaluation and Research (CDER) within the United States Food and Drug Administration was established to assess the possible impact of nanotechnology on drug products. The group is in the process of performing risk assessment and management exercises. The task of the working group is to identify areas where CDER may need to optimize its review practices and to develop standards to ensure review consistency for drug applications that may involve the application of nanotechnology.

View Article and Find Full Text PDF

We designed a study to provide reversibility and comparative injury data for several candidate urinary biomarkers of kidney injury in the United States Food and Drug Administration biomarker qualification process. The nephrotoxin gentamicin was given to rats once on each of three days and the animals were killed during dosing or over the following 42 days. Between days one and three, all biomarkers except albumin were elevated, peaked at day 7, and returned to control levels by day 10 (μ- and α-glutathione S-transferases, and renal papillary antigen-1) or day 15 (kidney injury molecule-1, lipocalin-2, osteopontin, and clusterin).

View Article and Find Full Text PDF

The Food and Drug Administration (FDA) does not, as yet, have specific guidances for products containing nanoscale materials. As announced in the report issued by the FDA Nanotechnology Task Force (July 2007), however, there are recommendations to various centers within the FDA to develop guidances for industry. Regardless of the lack of explicit FDA guidances, there are therapeutics currently on the market containing nanoscale materials, and additional novel nanomaterial-containing therapeutics are being developed with the hopes of being submitted for regulatory review and approval.

View Article and Find Full Text PDF

Nanoparticles (NP) often interfere with the mechanism and interpretation of high throughput in vitro toxicity assays. This interference may occur at any time during the assay and spans most NP systems. This study reports on a specific type of gold NP assay interference, where unmodified gold NPs were able to traffic certain assay molecules that contained primary amines across the cell membrane resulting in false positive results for toxicity assays.

View Article and Find Full Text PDF