Despite the conservation of genetic machinery involved in eye development, there is a strong diversity in the placement of eyes on the head of animals. Morphogen gradients of signaling molecules are vital to patterning cues. During eye development, Wingless (Wg), a ligand of Wnt/Wg signaling, is expressed anterolaterally to form a morphogen gradient to determine the eye- versus head-specific cell fate.
View Article and Find Full Text PDFTo describe nursing practices for financial toxicity management based on nurses' perceptions. A survey was conducted with 615 oncology nurses in Japan, focusing on nurses' perspectives on the importance of financial toxicity, nursing practices to manage financial toxicity and factors inhibiting its management. A total of 521 participated, of whom 266 respondents (51.
View Article and Find Full Text PDFVision is mainly based on two different tasks, object detection and color discrimination, carried out by photoreceptor (PR) cells. The Drosophila compound eye consists of ∼800 ommatidia. Every ommatidium contains eight PR cells, six outer cells (R1-R6) and two inner cells (R7 and R8), by which object detection and color vision are achieved, respectively.
View Article and Find Full Text PDFBackground: Financial burden of cancer treatment can negatively affect patients and their families. This study aimed to evaluate the financial toxicity of patients treated with molecular-targeted and immune therapies and explore the relationship between financial toxicity and patient experiences associated with the financial burden of cancer treatment.
Methods: This anonymous, self-administered questionnaire survey conducted across nine hospitals in Japan included patients aged 20-60 years who were receiving molecular-targeted agents or immune checkpoint inhibitors for any type of cancer for ≥ 2 months.
Steroid hormones play various physiological roles including metabolism and reproduction. Steroid hormones in insects are ecdysteroids, and the major form in Drosophila melanogaster is ecdysone. In Drosophila males, the accessory gland is responsive to nutrient-dependent regulation of fertility/fecundity.
View Article and Find Full Text PDFBackground/aim: This study aimed to show the trend of neutrophil counts and frequency of febrile neutropenia after changing pegfilgrastim from 3.6 mg to 1.8 mg.
View Article and Find Full Text PDFThe adult male accessory gland in insects is an internal reproductive organ analogous to the mammalian prostate, and secretes various components in the seminal fluid. Products of the accessory gland in the fruit fly Drosophila melanogaster are known to control reproductive behaviors in mated females, such as food uptake, oviposition rate, and rejection of re-mating with other males, all of which increase male reproductive capacity. Production of larger amounts of accessory gland products is thus thought to result in higher male reproductive success.
View Article and Find Full Text PDFNutrient conditions affect the reproductive potential and lifespan of many organisms through the insulin signaling pathway. Although this is well characterized in female oogenesis, nutrient-dependent regulation of fertility/fecundity in males is not known. Seminal fluid components synthesized in the accessory gland are required for high fecundity in Drosophila males.
View Article and Find Full Text PDFVeins are longitudinal cuticular structures that maintain shape of the wing. Drosophila melanogaster has six longitudinal veins (L1-L6) and two cross veins. The Zn-finger transcription factors of Spalt-complex (Sal) are required for positioning of the L2 and L5, and the homeodomain transcription factors of Iroquois complex (Iro-C) are required for formation of the L3 and L5 veins.
View Article and Find Full Text PDFBackground: In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear.
View Article and Find Full Text PDFDevelopmental fields are subdivided into lineage-restricted cell populations, known as compartments. In the eye imaginal disc of Drosophila, dorso-ventral (DV) lineage restriction is the primary event, whereas antero-posterior compartment boundary is the first lineage restriction in other imaginal discs. The Iroquois complex (Iro-C) genes function as dorsal selectors and repress the default, ventral, identity in the eye-head primordium.
View Article and Find Full Text PDFThe Drosophila male accessory gland has functions similar to those of the mammalian prostate gland and the seminal vesicle, and secretes accessory gland proteins into the seminal fluid. Each of the two lobes of the accessory gland is composed of two types of binucleate cell: about 1,000 main cells and 40 secondary cells. A well-known accessory gland protein, sex peptide, is secreted from the main cells and induces female postmating response to increase progeny production, whereas little is known about physiological significance of the secondary cells.
View Article and Find Full Text PDFA pair of the Drosophila eye-antennal disc gives rise to four distinct organs (eyes, antennae, maxillary palps, and ocelli) and surrounding head cuticle. Developmental processes of this imaginal disc provide an excellent model system to study the mechanism of regional specification and subsequent organogenesis. The dorsal head capsule (vertex) of adult Drosophila is divided into three morphologically distinct subdomains: ocellar, frons, and orbital.
View Article and Find Full Text PDFCircadian locomotor rhythms of Drosophila melanogaster are controlled by a neuronal circuit composed of approximately 150 clock neurons that are roughly classified into seven groups. In the circuit, a group of neurons expressing pigment-dispersing factor (PDF) play an important role in organizing the pacemaking system. Recent studies imply that unknown chemical neurotransmitter(s) (UNT) other than PDF is also expressed in the PDF-positive neurons.
View Article and Find Full Text PDFHow complex networks of activators and repressors lead to exquisitely specific cell-type determination during development is poorly understood. In the Drosophila eye, expression patterns of Rhodopsins define at least eight functionally distinct though related subtypes of photoreceptors. Here, we describe a role for the transcription factor gene defective proventriculus (dve) as a critical node in the network regulating Rhodopsin expression.
View Article and Find Full Text PDFThe Drosophila middle midgut cells derived from the endoderm develop into four distinct types of cell. Of these cells, copper cells have invaginated microvillar membranes on their apical surface, and they are involved in two distinct functions, i.e.
View Article and Find Full Text PDFSegmentation plays crucial roles during morphogenesis. Drosophila legs are divided into segments along the proximal-distal axis by flexible structures called joints. Notch signaling is necessary and sufficient to promote leg growth and joint formation, and is activated in distal cells of each segment in everting prepupal leg discs.
View Article and Find Full Text PDFTanpakushitsu Kakusan Koso
February 2007
The mechanisms for cell fate determination have been extensively studied whereas little is known about the mechanism through which functional specificity is established. In the Drosophila midgut, copper cells provide an excellent model system to examine this mechanism. Copper is an essential element for the activity of a number of physiologically important enzymes including Cu/Zn-superoxide dismutase, cytochrome c oxidase, and dopamine-beta-hydroxylase.
View Article and Find Full Text PDFThe discovery of homeobox gene clusters led us to realize that the mechanisms for body patterning and other developmental programs are evolutionally-conserved in vertebrates and invertebrates. The endoderm contributes to the lining of the gut and associated organs such as the liver and pancreas, which are critical for physiological functions. Our knowledge of endoderm development is limited; however, recent studies suggest that cooperation between the HNF3/Fork head and GATA transcription factors is crucial for endoderm specification.
View Article and Find Full Text PDFA homeobox gene, defective proventriculus (dve), is expressed in various tissues including the ventral ectoderm and midgut. Here, we show the expression pattern of dve in the ventral ectoderm, in which dve expression is induced by Spitz, a ligand for Drosophila epidermal growth factor receptor (EGFR). In spitz mutants, dve expression is only lost in the ventral ectoderm and overexpression of Spitz induces ectopic dve activation in the ventral ectoderm.
View Article and Find Full Text PDFTransgenic flies that can drive GAL4 expression under the control of the 7 kb 5'-region of the Drosophila Ca(2+)/calmodulin-dependent protein kinase II (dCaMKII) gene (dCaMKII-GAL4) were established. Characteristic features of this dCaMKII-GAL4 driven reporter expression were compatible with the endogenous dCaMKII expression pattern: The dCaMKII-GAL4 driven reporter gene was expressed preferentially in the central nervous system of the embryo and larvae. Reporter expression was also observed in the brain, thoracic ganglion, and gut of the adult.
View Article and Find Full Text PDFPattern formation during animal development is often induced by extracellular signaling molecules, known as morphogens, which are secreted from localized sources. During wing development in Drosophila, Wingless (Wg) is activated by Notch signaling along the dorsal-ventral boundary of the wing imaginal disc and acts as a morphogen to organize gene expression and cell growth. Expression of wg is restricted to a narrow stripe by Wg itself, repressing its own expression in adjacent cells.
View Article and Find Full Text PDFMorphogen gradients of secreted molecules play critical roles in the establishment of the spatial pattern of gene expression. During midgut development in Drosophila, secreted molecules of Decapentaplegic (Dpp) and Wingless (Wg) establish unique transcriptional regulation within target cells to specify the resultant cell types. Here we report the identification of a novel homeobox gene, defective proventriculus (dve), which is required for the midgut specification under the control of Dpp and Wg.
View Article and Find Full Text PDF