The eye primordium of vertebrates initially forms exactly at the side of the head. Later, the eyeball architecture is tuned to see ahead with better visual acuity, but its molecular basis is unknown. The position of both eyes in the face alters in patients with holoprosencephaly due to () mutations that disturb the development of the ventral midline of the neural tube.
View Article and Find Full Text PDFThe chromatin remodeler CHD8 represents a high-confidence risk factor in autism, a multistage progressive neurologic disorder, however the underlying stage-specific functions remain elusive. In this study, by analyzing conditional knock-out mice (male and female), we find that CHD8 controls cortical neural stem/progenitor cell (NSC) proliferation and survival in a stage-dependent manner. Strikingly, inducible genetic deletion reveals that CHD8 is required for the production and fitness of transit-amplifying intermediate progenitors (IPCs) essential for upper-layer neuron expansion in the embryonic cortex.
View Article and Find Full Text PDFDistinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ.
View Article and Find Full Text PDFHow homeodomain proteins gain sufficient specificity to control different cell fates has been a long-standing problem in developmental biology. The conserved Gsx homeodomain proteins regulate specific aspects of neural development in animals from flies to mammals, and yet they belong to a large transcription factor family that bind nearly identical DNA sequences in vitro. Here, we show that the mouse and fly Gsx factors unexpectedly gain DNA binding specificity by forming cooperative homodimers on precisely spaced and oriented DNA sites.
View Article and Find Full Text PDFThe Gsx2 homeodomain transcription factor promotes neural progenitor identity in the lateral ganglionic eminence (LGE), despite upregulating the neurogenic factor Ascl1. How this balance in maturation is maintained is unclear. Here, we show that Gsx2 and Ascl1 are co-expressed in subapical progenitors that have unique transcriptional signatures in LGE ventricular zone (VZ) cells.
View Article and Find Full Text PDFThe mature mammalian brain has long been thought to be a structurally rigid, static organ since the era of Ramón y Cajal in the early 20th century. Evidence accumulated over the past three decades, however, has completely overturned this long-held view. We now know that new neurons and glia are continuously added to the brain at postnatal stages, even in mature adults of various mammalian species, including humans.
View Article and Find Full Text PDFThe homeobox gene Gsx2 has previously been shown to inhibit oligodendroglial specification in dorsal lateral ganglionic eminence (dLGE) progenitors of the ventral telencephalon. The precocious specification of oligodendrocyte progenitor cells (OPCs) observed in Gsx2 mutants, however, is transient and begins to normalize by late stages of embryogenesis. Interestingly, this normalization correlates with the expansion of Gsx1, a close homolog of Gsx2, in a subset of progenitors in the Gsx2 mutant LGE.
View Article and Find Full Text PDFIn this study, we generated a transgenic mouse line driving Cre and EGFP expression with two putative cis-regulatory modules (CRMs) (i.e., hs687 and hs678) upstream of the homeobox gene Gsx2 (formerly Gsh2), a critical gene for establishing lateral ganglionic eminence (LGE) identity.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
July 2016
Adult neurogenesis in the mammalian brain is often viewed as a continuation of neurogenesis at earlier, developmental stages. Here, we will critically review the extent to which this is the case highlighting similarities as well as key differences. Although many transcriptional regulators are shared in neurogenesis at embryonic and adult stages, recent findings on the molecular mechanisms by which these neuronal fate determinants control fate acquisition and maintenance have revealed profound differences between development and adulthood.
View Article and Find Full Text PDFCell reprogramming technologies have enabled the generation of various specific cell types including neurons from readily accessible patient cells, such as skin fibroblasts, providing an intriguing novel cell source for autologous cell transplantation. However, cell transplantation faces several difficult hurdles such as cell production and purification, long-term survival, and functional integration after transplantation. Recently, in vivo reprogramming, which makes use of endogenous cells for regeneration purpose, emerged as a new approach to circumvent cell transplantation.
View Article and Find Full Text PDFMüller glial cells are the source of retinal regeneration in fish and birds; although this process is efficient in fish, it is less so in birds and very limited in mammals. It has been proposed that factors necessary for providing neurogenic competence to Müller glia in fish and birds after retinal injury are not expressed in mammals. One such factor, the proneural transcription factor Ascl1, is necessary for retinal regeneration in fish but is not expressed after retinal damage in mice.
View Article and Find Full Text PDFThe activity of adult stem cells is regulated by signals emanating from the surrounding tissue. Many niche signals have been identified, but it is unclear how they influence the choice of stem cells to remain quiescent or divide. Here we show that when stem cells of the adult hippocampus receive activating signals, they first induce the expression of the transcription factor Ascl1 and only subsequently exit quiescence.
View Article and Find Full Text PDFThe protein tyrosine phosphatase Shp2 (PTPN11) is crucial for normal brain development and has been implicated in dorsal telencephalic neuronal and astroglia cell fate decisions. However, its roles in the ventral telencephalon and during oligodendrogenesis in the telencephalon remain largely unknown. Shp2 gain-of-function (GOF) mutations are observed in Noonan syndrome, a type of RASopathy associated with multiple phenotypes, including cardiovascular, craniofacial, and neurocognitive abnormalities.
View Article and Find Full Text PDFDirect reprogramming of non-neuronal cells to generate new neurons is a promising approach to repair damaged brains. Impact of the in vivo environment on neuronal reprogramming, however, is poorly understood. Here we show that regional differences and injury conditions have significant influence on the efficacy of reprogramming and subsequent survival of the newly generated neurons in the adult rodent brain.
View Article and Find Full Text PDFOligodendrocytes are the myelin-forming cells of the CNS. They differentiate from oligodendrocyte precursor cells (OPCs) that are produced from progenitors throughout life but more actively during the neonatal period and in response to demyelinating insults. An accurate regulation of oligodendrogenesis is required to generate oligodendrocytes during these developmental or repair processes.
View Article and Find Full Text PDFNeural stem cells (NSCs) reside in widespread regions along the lateral ventricle and generate diverse olfactory bulb (OB) interneuron subtypes in the adult mouse brain. Molecular mechanisms underlying their regional diversity, however, are not well understood. Here we show that the homeodomain transcription factor Gsx2 plays a crucial role in the region-specific control of adult NSCs in both persistent and injury-induced neurogenesis.
View Article and Find Full Text PDFThe homeobox gene Gsx2 has previously been shown to be required for the specification of distinct neuronal subtypes derived from lateral ganglionic eminence (LGE) progenitors at specific embryonic time points. However, its role in the subsequent generation of oligodendrocytes from these progenitors remains unclear. We have utilized conditional gain-of-function and loss-of-function approaches in order to elucidate the role of Gsx2 in the switch between neurogenesis and oligodendrogenesis within the embryonic ventral telencephalon.
View Article and Find Full Text PDFAppropriately targeted manipulation of endogenous neural stem progenitor (NSP) cells may contribute to therapies for trauma, stroke, and neurodegenerative disease. A prerequisite to such therapies is a better understanding of the mechanisms regulating adult NSP cells in vivo. Indirect data suggest that endogenous ciliary neurotrophic factor (CNTF) receptor signaling may inhibit neuronal differentiation of NSP cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2011
Homeobox genes Gsx1 and Gsx2 (formerly Gsh1 and Gsh2) are among the earliest transcription factors expressed in neuronal progenitors of the lateral ganglionic eminence (LGE) in the ventral telencephalon. Gsx2 is required for the early specification of LGE progenitor cells and recently has been shown to specify different LGE neuronal subtypes at distinct time points. In Gsx2 mutants, Gsx1 compensates, at least in part, for the loss of Gsx2 in the specification of LGE neuronal subtypes.
View Article and Find Full Text PDFGABAergic neurons and oligodendrocytes originate from progenitors within the ventral telencephalon. However, the molecular mechanisms that control neuron-glial cell-fate segregation, especially how extrinsic factors regulate cell-fate changes, are poorly understood. We have discovered that the Wnt receptor Ryk promotes GABAergic neuron production while repressing oligodendrocyte formation in the ventral telencephalon.
View Article and Find Full Text PDFDiffusion tensor imaging (DTI) is a powerful method to visualize white matter, but its use in patients with acute stroke remains limited because of the lack of corresponding histologic information. In this study, we addressed this issue using a hypoxia-ischemia (HI)-induced thrombotic model of stroke in adult mice. At 6, 15, and 24 hours after injury, animals were divided into three groups for (1) in vivo T2- and diffusion-weighted magnetic resonance imaging, followed by histochemistry, (2) ex vivo DTI and electron microscopy, and (3) additional biochemical or immunochemical assays.
View Article and Find Full Text PDFThe modes of proliferation and differentiation of neural stem cells (NSCs) are coordinately controlled during development, but the underlying mechanisms remain largely unknown. In this study, we show that the protooncoprotein Myc and the tumor suppressor p19(ARF) regulate both NSC self-renewal and their neuronal and glial fate in a developmental stage-dependent manner. Early-stage NSCs have low p19(ARF) expression and retain a high self-renewal and neurogenic capacity, whereas late-stage NSCs with higher p19(ARF) expression possess a lower self-renewal capacity and predominantly generate glia.
View Article and Find Full Text PDFDevelopment of oligodendrocytes, myelin-forming glia in the central nervous system (CNS), proceeds on a protracted schedule. Specification of oligodendrocyte progenitors (OLPs) begins early in development, whereas their terminal differentiation occurs at late embryonic and postnatal periods. How these distinct steps are controlled remains unclear.
View Article and Find Full Text PDF