Publications by authors named "Najmin Tohora"

Organic luminescent materials having photoluminescence in their solid state have become emerging trends in chemistry, materials science, and biology due to their versatile potential applications. In the present contribution, we have introduced some methylenebis(4,1-phenylene) electron donor-acceptor-based fashionable solid-state fluorescent molecules, MBA, MBB, and MBH, having exciting photoluminescence characteristics in their solid and aggregate states. Interestingly, all probes exhibited a compelling aggregation-induced enhanced emission (AIEE) phenomenon in aqueous media.

View Article and Find Full Text PDF

Owing to the extreme toxicity and easy synthesis protocol of G-series nerve agents, developing an efficient sensor for selective detection is necessary. Although various traditional methods are utilized to identify these nerve agents, chromo-fluorogenic probes have gained attractive attention from the scientific communities. In the present contribution, we have introduced a new symmetrical aza-substituted chromo-fluorogenic sensor, BPH, for specific detection of sarin gas, one of the fatal G-series nerve agents surrogate, diethylchlorophosphate (DCP).

View Article and Find Full Text PDF

Nerve agents are becoming serious issues for the healthy and sustainable environment of modern civilization. Therefore, its detection and degradation are of paramount importance to the scientific community. In the present contribution, we have introduced a chromo-fluorogenic pyrene-based  probe, (E)-2-methoxy-3-(pyren-1-ylimino)-3,8a-dihydro-2H-chromen-4-ol (PMCO) to detect sarin stimulant diethylchlorophosphate (DCP) in solution and gaseous phases.

View Article and Find Full Text PDF

Nerve agents are the most notorious substances, which can be fatal to an individual because they block the activity of acetylcholinesterase. Fighting against unpredictable terrorist assaults and wars requires the simple and quick detection of chemical warfare agent vapor. In the present contribution, we have introduced a rhodamine-based chemosensor, BDHA, for the detection of nerve gas-mimicking agents diethylchlorophosphate (DCP) and diethylcyanophosphonate (DCNP) and mustard gas-mimicking agent 2-chloroethyl ethyl sulfide (CEES), both in the liquid and vapor phase.

View Article and Find Full Text PDF

The simplicity of synthesis, significant toxicity of organophosphorus-containing nerve agents, and ease of use of their in-terrorism attacks highlight the necessity to create efficient probes and precise methods for detecting these chemicals. This study developed luminogenic probe 4-(1 H-phenanthrene imidazole-2-yl) benzaldehyde, PB for selectively recognizing lethal chemical sarin mimicking diethylchlorophosphate (DCP) with µM detection limit. Following the addition of DCP to the PB solution, the fluorescence changed from bluish-cyan to green simultaneously; after the insertion of triethylamine (TEA) into the PB-DCP phosphorylated solution, the fluorescence of the original one came back, and it occurred five times.

View Article and Find Full Text PDF

The high-level toxic effects of organophosphate (OP) nerve agents severely threaten national security and public health. Generating trustworthy, accurate methods for quickly identifying these poisonous chemicals is urgently necessary. In this study, we have presented an azine-based colorimetric sensor (HBD) for the highly sensitive and selective identification of poisonous sarin gas surrogate diethylchlorophosphate (DCP).

View Article and Find Full Text PDF

In this study, an excellent chromo-fluorogenic PMPA probe, ()-4-(((4-(benzoxazole-2-yl)phenyl)imino)methyl)-,-diphenylamine, is introduced for the detection of sarin gas mimic diethyl chlorophosphate (DCP) in solution and gaseous phases. On adding DCP into PMPA solution in a pure DMSO and water-DMSO (4 : 1) medium, it exhibits a hypsochromic shift from yellow to colorless and from no fluorescence to highly intense blue-violet photoluminescence the formation of a phosphorylated PMPA-DCP product due to the inhibition of intramolecular charge transfer (ICT) and photoinduced electron transfer (PET) mechanism. The sensor could detect DCP in the presence of several other notorious guest analytes with a detection limit in the μM range.

View Article and Find Full Text PDF

Nitroaromatic compounds are illicit explosive chemicals. For environmental security and homeland safety, selective and sensitive identification of these secondary-class explosives has been a reason for the exhaustive research arena of chemists for about a decade. We introduced a sensitive optical sensor with desalted neutral red (NR) dye.

View Article and Find Full Text PDF

Nerve agents are highly poisonous organophosphorus chemicals, and the possibility of being used in terrorist attacks seriously threatens public safety. Thus, developing quick and straightforward detection techniques for these dangerous substances is paramount for the scientific communities. In this contribution, we have fabricated a sensitive and easily applicable ionic liquids (ILs) based colorimetric sensor for detecting various nerve agents' stimulants in solution and gas phases, respectively, based on methyl orange (MO)-based IL ([P][MO]) derived from MO dye and trihexyltetradecylphosphonium chloride (PCl) by a simple ion exchange mechanism.

View Article and Find Full Text PDF

A benzoxazole-based fluorosensor (IMP) has been synthesized and employed for the selective and sensitive detection of sarin surrogate, diethylchlorophosphate (DCP) in solution, and gas phase, respectively. Remarkable turn-on fluorescence is observed due to the introduction of DCP in the solution of IMP because of inhibition of the intramolecular charge transfer process and disruption of the excited state intramolecular proton transfer (ESIPT) mechanism. The synthesized IMP-based fluorescence sensor exhibits excellent selectivity, high sensitivity, and a wide linear range of 15-60 μM with a detection limit of 44 nM.

View Article and Find Full Text PDF

Fast and precise identification of toxic G-series nerve agents in the solution and vapor phase is urgently needed to save human beings from unwanted wars and terrorist attacks, which is challenging to execute practically. In this article, we have designed and synthesized a sensitive and selective phthalimide-based chromo-fluorogenic sensor, DHAI, by a simple condensation process that shows ratiometric and turns on chromo-fluorogenic behavior towards Sarin gas mimic diethylchlorophosphate (DCP) in liquid and vapor phases, respectively. A colorimetric change, from yellow to colorless, is observed in the DHAI solution due to the introduction of DCP in daylight.

View Article and Find Full Text PDF

This article highlights the investigation of anion interactions and recognition abilities of naphthalene derivative, [(E)-1-(((4-nitrophenyl)imino)methyl)naphthalen-2-ol], (NIMO) by UV-visible spectroscopically and colorimetrically. NIMO shows selective recognition of F ions colorimetrically, and a visual color change from yellow to pink is observed by the naked eye. The F ions recognition is fully reversible in the presence of HSO ions.

View Article and Find Full Text PDF

This report explores the reversible acidochromism of a benzoxazole-based scaffold (BPP), which is highly sensitive to the acid-base in the liquid and gas phases. With the addition of acid, the solution of BPP changes its color from yellow to pink fuchsia due to the transformation of its imine into quinonoid form. Colour change is completely reversible in the presence of the base, confirming the reversible acidochromic behavior of the present BPP system.

View Article and Find Full Text PDF