Mental illnesses extract a high personal and societal cost, and thus explorations of the links between mental illness and functional connectivity in the brain are critical. Investigating major mental illnesses, believed to arise from disruptions in sophisticated neural connections, allows us to comprehend how these neural network disruptions may be linked to altered cognition, emotional regulation, and social interactions. Although neuroimaging has opened new avenues to explore neural alterations linked to mental illnesses, the field still requires precise and sensitive methodologies to inspect these neural substrates of various psychological disorders.
View Article and Find Full Text PDFDynamic functional network connectivity (dFNC) analysis is a widely used approach for studying brain function and offering insight into how brain networks evolve over time. Typically, dFNC studies utilized fixed spatial maps and evaluate transient changes in coupling among time courses estimated from independent component analysis (ICA). This manuscript presents a complementary approach that relaxes this assumption by spatially reordering the components dynamically at each timepoint to optimize for a smooth gradient in the FNC (i.
View Article and Find Full Text PDFCannabis is one of the most used and commodified illicit substances worldwide, especially among young adults. The neurobiology mechanism of cannabis is yet to be identified particularly in youth. The purpose of this study was to concurrently measure alterations in brain structural and functional connectivity in cannabis users using resting-state functional magnetic resonance images (rs-fMRI) and diffusion-weighted images (DWI) from a group of 73 cannabis users (age 22-36, 19 female) in comparison with 73 healthy controls (age 22-36, 14 female) from Human Connectome Project (HCP).
View Article and Find Full Text PDF