Purpose. Our physiopathological assumption is that u-PA, t-PA, and PAI-1 are released by calcified aortic valves and play a role in the calcification of these valves. Methods.
View Article and Find Full Text PDFBackground And Aim Of The Study: Aortic stenosis, the most frequent valvulopathy in the Western world, is characterized by an important extracellular matrix (ECM) remodeling and a process of calcification in the aortic valves. One physiopathological assumption is that transforming growth factor-beta1 (TGF-beta1) acts through ECM remodeling and plays a role in calcification, implicating also microparticles (MPs). Another recent notion is the active involvement of inflammatory mediators in the calcification process of aortic stenosis.
View Article and Find Full Text PDFValvular heart diseases represent an important public health burden. With the decrease in the incidence of rheumatic heart disease, calcific aortic stenosis has now become the most common valvular disease in Western countries. Its prevalence increases with age, such that its affects about 4% of the elderly population and it is the most common motive for valve replacement.
View Article and Find Full Text PDFPrevious studies have described remodelling of the extracellular substratum by matrix metalloproteinases (MMPs) in aortic valves. However, involvement of the fibrinolytic system has not yet been analysed. We hypothesized that plasminogen and plasminogen activator(s) are present in aortic valves and that plasminogen activation could induce the degradation of adhesive proteins and apoptosis of the valvular myofibroblasts.
View Article and Find Full Text PDF