Publications by authors named "Najib Kacem"

Periodic chains of nonlinear oscillators are known to support solitonic solutions within a specific range of physical parameters when damping effect is considered. This Letter investigates the dynamics of stationary solitons in damped nonlinear lattices under external excitation, focusing on the influence of impurities related to the natural frequency of the oscillators. We demonstrate experimentally and numerically that incorporating impurities into externally driven periodic lattices can expand the solitonic stability diagram under high-damping areas and near the Hopf bifurcation of periodic structures.

View Article and Find Full Text PDF

The functionalization of internal resonance (IR) is theoretically and experimentally demonstrated on a nonlinear hybrid vibration energy harvester (HVEH) based on piezoelectric (PE) and electromagnetic (EM) transductions. This nonlinear phenomenon is tuned by adjusting the gaps between the moving magnets of the structure, enabling 1:1 and 2:1 IR. The experimental results prove that the activation of 2:1 IR with a realistic excitation amplitude allows the improvement of both the frequency bandwidth (BW) and the harvested power (HP) by 300% and 100%, respectively compared to the case away from IR.

View Article and Find Full Text PDF

In this paper, we develop a new approach in order to understand the origin of the quadrature error in MEMS gyroscopes. As the width of the flexure springs is a critical parameter in the MEMS design, it is necessary to investigate the impact of the width variations on the stiffness coupling, which can generate a quadrature signal. To do so, we developed a method to determine the evolution of the stiffness matrix of the gyroscope springs with respect to the variation of the bending beams width of the springs through finite element analysis (FEA).

View Article and Find Full Text PDF

We present a mode localized mass sensor prototype based on a hybrid system excited at a fixed frequency slightly below the resonances. Indeed, we show, both theoretically and experimentally, that this condition yields higher sensitivities and similar sensitivity ranges than that of resonance peak tracking while being less time consuming than a classical open-loop configuration due to the absence of frequency sweep. The system is made of a quartz resonator and a hardware that includes a resonator and the coupling.

View Article and Find Full Text PDF

In order to investigate the effects of geometric imperfections on the static and dynamic behavior of capacitive micomachined ultrasonic transducers (CMUTs), the governing equations of motion of a circular microplate with initial defection have been derived using the von Kármán plate theory while taking into account the mechanical and electrostatic nonlinearities. The partial differential equations are discretized using the differential quadrature method (DQM) and the resulting coupled nonlinear ordinary differential equations (ODEs) are solved using the harmonic balance method (HBM) coupled with the asymptotic numerical method (ANM). It is shown that the initial deflection has an impact on the static behavior of the CMUT by increasing its pull-in voltage up to 45%.

View Article and Find Full Text PDF