Pharmaceuticals (Basel)
January 2022
Transient Receptor Potential Ankyrin 1 (TRPA1) has been reported to influence neuroinflammation and lymphocyte function. We analysed the immune phenotype and activation characteristics of TRPA1-deficient mice (knockout-KO) generated by targeted deletion of the pore-loop domain of the ion channel. We compared TRPA1 mRNA and protein expression in monocyte and lymphocyte subpopulations isolated from primary and secondary lymphatic organs of wild type (WT) and KO mice.
View Article and Find Full Text PDFIn our previous single-center study of autoimmune encephalitis (AE) related autoantibody test results we found positivity in 60 patients out of 1,034 with suspected AE from 2012 through 2018 as part of a Hungarian nationwide program. In our current multicenter retrospective study, we analyzed the clinical characteristics and outcome of AE patients with positive neuronal cell surface autoantibody test results. A standard online questionnaire was used to collect demographic and clinical characteristics, laboratory and imaging data, therapy and prognosis of 30 definitive AE patients in four major clinical centers of the region.
View Article and Find Full Text PDFEarlier we have reported that thymic regulatory T cells (Treg) are resistant to in vivo glucocorticoid hormone (GC)-induced apoptosis, while the most GC-sensitive DP thymocytes died through the activation of mitochondrial apoptotic pathway. Here we analyzed the apoptosis-inducing effect of high dose (10 M) in vitro dexamethasone (DX) treatment in mouse thymic- and splenic Tregs and CD4 T cells. Activation of both extrinsic and intrinsic apoptotic pathways started after 2 h of DX treatment in CD4 SP thymocytes and was 3 × higher than in CD4 splenocytes, while in Treg cells, weak activation of the extrinsic apoptotic pathway started only after 3 h.
View Article and Find Full Text PDFIn Hungary, between February 2017 and July 2019, 70 confirmed measles cases were reported, raising questions about the adequacy of population-level immunity. Although the assumed vaccination coverage is ≥99%, in a recent study, we detected potential gaps in the anti-measles humoral immunity. In Hungary, according to a decree by the Ministry of Public Welfare, beginning from 2021, the healthcare provider should conduct a serosurvey of anti-measles protection levels of healthcare professionals.
View Article and Find Full Text PDFAltered expression and function of the Toll-like receptor (TLR) homologue CD180 molecule in B cells have been associated with autoimmune disorders. In this study, we report decreased expression of CD180 at protein and mRNA levels in peripheral blood B cells of diffuse cutaneous systemic sclerosis (dcSSc) patients. To analyze the effect of CD180 stimulation, together with CpG (TLR9 ligand) treatment, on the phenotype defined by CD19/CD27/IgD/CD24/CD38 staining, and function (CD69 and CD180 expression, cytokine and antibody secretion) of B cell subpopulations, we used tonsillar B cells.
View Article and Find Full Text PDFObjective: Autoantibody detection is crucial for the early diagnosis of autoimmune encephalitis (AIE) since prompt therapy can determine the disease outcome. Here, we report a single-center 6-year retrospective study of autoantibody testing in AIE in the Hungarian population.
Methods: Serum and/or cerebrospinal fluid (CSF) autoantibody tests were performed using cell-based indirect immunofluorescence assay for AIE diagnosis.
Despite the spectacular development of clinical immunotherapy (IT) in the last decade, the regular treatment approaches for the most common central nervous system (CNS) tumors, the malignant gliomas (MGs) has not changed yet. The most important pitfalls of the routine application of immunotherapy can be imputed to the special and originally immunosuppressed microenvironment and the extreme heterogeneity of MGs, however the defensive role of the blood-brain barrier, the general usage of steroids and the difficulties in the evaluation of brain images can also play a role in these types of difficulties. Additionally, in the case of MGs, well-accepted IT biomarker assays (PDL1 positivity, mismatch repair deficiencies, tumor mutation burden, etc.
View Article and Find Full Text PDFObjective: Functional disturbances in regulatory T cells (Treg) have been described in autoimmune diseases, and their potential therapeutic use is intensively studied. Our goal was to investigate the influence of glucocorticoid hormone on the in vitro differentiation of Treg cells from thymic and splenic CD4 T cells under different conditions to establish methods for generating stable and functionally suppressive iTregs for future use in adoptive transfer experiments.
Methods: Thymic and splenic CD4 T lymphocytes were isolated from 3 to 4 week-old control and in vivo dexamethasone (DX) pretreated BALB/c mice using magnetic bead negative selection, followed by CD25 positive selection.
Because of measles outbreaks there is a need for continuous monitoring of immunological protection against infection at population level. For such monitoring to be feasible, a cost-effective, reliable and high-throughput assay is necessary. Herein we describe an ELISA protocol for assessment of anti-measles antibody levels in human serum samples that fulfills the above criteria and is easily adaptable by various laboratories.
View Article and Find Full Text PDFOur previous studies showed that anti-citrate synthase (anti-CS) immunoglobulin (Ig)M natural autoantibodies are present in healthy individuals without previous antigen stimulation, but no studies have investigated their presence in the pericardial fluid (PF). Therefore, we detected the natural anti-CS IgG/M autoantibody levels in plasma and PF of cardiac surgery patients and investigated their relationship with cardiovascular disease-associated bacterial pathogens. PF and blood samples of 22 coronary artery bypass graft (CABG) and 10 aortic valve replacement (AVR) patients were tested for total Ig levels, natural autoantibodies and infection-related antibodies using enzyme-linked immunosorbent assay (ELISA) and Luminex methods.
View Article and Find Full Text PDFObjective: Despite the fact that glucocorticoids (GC) are important therapeutic tools, their effects on regulatory T cells (Treg) are not well defined. The aim of our work was to investigate how GCs influence in vivo the thymic (tTreg) and peripheral Treg (pTreg) differentiation, survival and cytokine production.
Methods: Tregs were detected with flow cytometry in lymphatic organs of 4-6 weeks old BALB/c mice after repeated (2-4days), high-dose in vivo GC treatment using CD4/CD25 cell surface and Foxp3/IL-10/TGFβ/glucocorticoid receptor (GR) intracellular staining.
Treg abnormalities have been implicated in the pathogenesis of systemic sclerosis (SSc). Treg subpopulations and their cytokines, IL-10 and TGF-β in the peripheral blood of early stage SSc patients were investigated. We hypothesized that epigenetically regulated methylation of the FOXP3 promoter and enhancer regions are altered in Tregs of SSc patients, which might be involved in the T cell imbalance.
View Article and Find Full Text PDFHuman neural stem cells (NSC) are inherently tumor tropic, making them attractive drug delivery vehicles. Toward this goal, we retrovirally transduced an immortalized, clonal NSC line to stably express cytosine deaminase (HB1.F3.
View Article and Find Full Text PDFPre-clinical studies indicate that neural stem cells (NSCs) can limit or reverse CNS damage through direct cell replacement, promotion of regeneration, or delivery of therapeutic agents. Immortalized NSC lines are in growing demand due to the inherent limitations of adult patient-derived NSCs, including availability, expandability, potential for genetic modifications, and costs. Here, we describe the generation and characterization of a new human fetal NSC line, immortalized by transduction with L-MYC (LM-NSC008) that in vitro displays both self-renewal and multipotent differentiation into neurons, oligodendrocytes, and astrocytes.
View Article and Find Full Text PDFBiochim Biophys Acta
April 2016
Cellular senescence is defined by an irreversible growth arrest and is an important biological mechanism for suppression of tumor formation. Although deletion/mutation to DNA sequences is one mechanism by which cancer cells can escape senescence, little is known about the epigenetic factors contributing to this process. Histone modifications and chromatin remodeling related to the function of a histone demethylase, jumonji domain-containing protein 3 (JMJD3; also known as KDM6B), play an important role in development, tissue regeneration, stem cells, inflammation, and cellular senescence and aging.
View Article and Find Full Text PDFPathobiol Aging Age Relat Dis
December 2015
The depletion of stem cell pools and the accumulation of senescent cells in animal tissues are linked to aging. Planarians are invertebrate flatworms and are unusual in that their stem cells, called neoblasts, are constantly replacing old and dying cells. By eliminating neoblasts in worms via irradiation, the biological principles of aging are exposed in the absence of wound healing and regeneration, making planaria a powerful tool for aging research.
View Article and Find Full Text PDFUnlabelled: Jumonji domain-containing protein 3 (JMJD3/KDM6B) demethylates lysine 27 on histone H3 (H3K27me3), a repressive epigenetic mark controlling chromatin organization and cellular senescence. To better understand the functional consequences of JMJD3 its expression was investigated in brain tumor cells. Querying patient expression profile databases confirmed JMJD3 overexpression in high-grade glioma.
View Article and Find Full Text PDFPathol Oncol Res
October 2014
Malignant gliomas are among the deadliest primary brain tumors. Despite multimodal therapy and advances in chemotherapy, imaging, surgical and radiation techniques, these tumors remain virtually incurable. Glioma stem cells may be responsible for resistance to traditional therapies and tumor recurrence.
View Article and Find Full Text PDFCPT-11 (irinotecan) has been investigated as a treatment for malignant brain tumors. However, limitations of CPT-11 therapy include low levels of the drug entering brain tumor sites and systemic toxicities associated with higher doses. Neural stem cells (NSCs) offer a novel way to overcome these obstacles because of their inherent tumor tropism and ability to cross the blood-brain barrier, which enables them to selectively target brain tumor sites.
View Article and Find Full Text PDFNumerous stem cell-based therapies are currently under clinical investigation, including the use of neural stem cells (NSCs) as delivery vehicles to target therapeutic agents to invasive brain tumors. The ability to monitor the time course, migration, and distribution of stem cells following transplantation into patients would provide critical information for optimizing treatment regimens. No effective cell-tracking methodology has yet garnered clinical acceptance.
View Article and Find Full Text PDFHigh-grade gliomas are extremely difficult to treat because they are invasive and therefore not curable by surgical resection; the toxicity of current chemo- and radiation therapies limits the doses that can be used. Neural stem cells (NSCs) have inherent tumor-tropic properties that enable their use as delivery vehicles to target enzyme/prodrug therapy selectively to tumors. We used a cytosine deaminase (CD)-expressing clonal human NSC line, HB1.
View Article and Find Full Text PDFBackground: Glioblastoma multiforme (GBM) is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts.
View Article and Find Full Text PDFMedulloblastoma is a heterogeneous diffuse neoplasm that can be highly disseminated, and is the most common malignant childhood brain tumor. Although multimodal treatments have improved survival rates for patients with medulloblastoma, these tumors are associated with high morbidity and mortality. New treatment strategies are urgently needed to improve cure rates and, importantly, to spare normal brain tissue from neurotoxicity and patients from life-long cognitive and functional deficits associated with current therapies.
View Article and Find Full Text PDFMetastasis to multiple organs is the primary cause of mortality in breast cancer patients. The poor prognosis for patients with metastatic breast cancer and toxic side effects of currently available treatments necessitate the development of effective tumor-selective therapies. Neural stem cells (NSCs) possess inherent tumor tropic properties that enable them to overcome many obstacles of drug delivery that limit effective chemotherapy strategies for breast cancer.
View Article and Find Full Text PDFAntibodies and antibody conjugates have emerged as important tools for cancer therapy. However, a major therapeutic challenge for the use of antibodies is their inability to cross the blood-brain barrier (BBB) to reach tumors localized in the central nervous system (CNS). Multiple methods have been developed to enhance antibody delivery to the CNS, including direct injection, mechanical or biochemical disruption of the BBB, conjugation to a 'molecular Trojan horse', cationization, encapsulation in nanoparticles and liposomes, and more recently, stem cell-mediated antibody delivery.
View Article and Find Full Text PDF