Mater Sci Eng C Mater Biol Appl
January 2013
The technique of activators generated by electron transfer for atom transfer radical polymerization (AGET-ATRP) of acrylonitrile (AN) has been first attempted in emulsion using the procedure of "one-pot", "two-step" with polyethylene glycol monooleyl ether (Brij 35) as surfactant, cupric chloride (CuCl2) as catalyst, hexamethylenetetramine (HMTA) as ligand, carbon tetrachloride (CCl4) as initiator and ascorbic acid (VC) as reducing agent. The polymerization proceeds in controlled/living manner as indicated by first-order kinetics of the polymerization rate with respect to the monomer concentration, linear increase of the molecular weight of polyacrylonitrile (PAN) with monomer conversion and narrow polydispersity. Monomer conversion increases initially with the increase of ligand HMTA and then decreases.
View Article and Find Full Text PDFA novel method of surface modification was developed via iron (III)-mediated atom transfer radical polymerization, with activators regenerated by electron transfer (ARGET ATRP) on the surfaces of polystyrene resin-supported N-chlorosulfonamide groups. The well-defined polyacrylonitrile (PAN) was grafted onto the surfaces of the polystyrene (PS). The graft reaction exhibited first-order kinetics with respect to the polymerization time in the low-monomer-conversion stage.
View Article and Find Full Text PDF