Publications by authors named "Naixue Xiong"

Medication recommendation based on electronic health records (EHRs) is a significant research direction in the biomedical field, which aims to provide a reasonable prescription for patients according to their historical and current health conditions. However, the existing recommended methods have many limitations in dealing with the structural and temporal characteristics of EHRs. These methods either only consider the current state while ignoring the historical situation, or fail to adequately assess the structural correlations among various medical events.

View Article and Find Full Text PDF

Cryptography is very essential in our daily life, not only for confidentiality of information, but also for information integrity verification, non-repudiation, authentication, and other aspects. In modern society, cryptography is widely used; everything from personal life to national security is inseparable from it. With the emergence of quantum computing, traditional encryption methods are at risk of being cracked.

View Article and Find Full Text PDF

Graph neural networks have been widely used by multivariate time series-based anomaly detection algorithms to model the dependencies of system sensors. Previous studies have focused on learning the fixed dependency patterns between sensors. However, they ignore that the inter-sensor and temporal dependencies of time series are highly nonlinear and dynamic, leading to inevitable false alarms.

View Article and Find Full Text PDF

In this paper, we propose a Robust Breast Cancer Diagnostic System (RBCDS) based on multimode Magnetic Resonance (MR) images. Firstly, we design a four-mode convolutional neural network (FMS-PCNN) model to detect whether an image contains a tumor. The features of the images generated by different imaging modes are extracted and fused to form the basis of classification.

View Article and Find Full Text PDF

Due to the fast transmission speed and severe health damage, COVID-19 has attracted global attention. Early diagnosis and isolation are effective and imperative strategies for epidemic prevention and control. Most diagnostic methods for the COVID-19 is based on nucleic acid testing (NAT), which is expensive and time-consuming.

View Article and Find Full Text PDF

With the rise of the processing power of networked agents in the last decade, second-order methods for machine learning have received increasing attention. To solve the distributed optimization problems over multiagent systems, Newton's method has the benefits of fast convergence and high estimation accuracy. In this article, we propose a reinforced network Newton method with K -order control flexibility (RNN-K) in a distributed manner by integrating the consensus strategy and the latest knowledge across the network into local descent direction.

View Article and Find Full Text PDF

Car-following is an essential trajectory control strategy for the autonomous vehicle, which not only improves traffic efficiency, but also reduces fuel consumption and emissions. However, the prediction of lane change intentions in adjacent lanes is problematic, and will significantly affect the car-following control of the autonomous vehicle, especially when the vehicle changing lanes is only a connected unintelligent vehicle without expensive and accurate sensors. Autonomous vehicles suffer from adjacent vehicles' abrupt lane changes, which may reduce ride comfort and increase energy consumption, and even lead to a collision.

View Article and Find Full Text PDF

Cellular-based networks keep large buffers at base stations to smooth out the bursty data traffic, which has a negative impact on the user's Quality of Experience (QoE). With the boom of smart vehicles and phones, this has drawn growing attention. For this paper, we first conducted experiments to reveal the large delays, thus long flow completion time (FCT), caused by the large buffer in the cellular networks.

View Article and Find Full Text PDF

With the development of intelligent transportation system (ITS) and vehicle to X (V2X), the connected vehicle is capable of sensing a great deal of useful traffic information, such as queue length at intersections. Aiming to solve the problem of existing models' complexity and information redundancy, this paper proposes a queue length sensing model based on V2X technology, which consists of two sub-models based on shockwave sensing and back propagation (BP) neural network sensing. First, the model obtains state information of the connected vehicles and analyzes the formation process of the queue, and then it calculates the velocity of the shockwave to predict the queue length of the subsequent unconnected vehicles.

View Article and Find Full Text PDF

Crowd counting, which is widely used in disaster management, traffic monitoring, and other fields of urban security, is a challenging task that is attracting increasing interest from researchers. For better accuracy, most methods have attempted to handle the scale variation explicitly. which results in huge scale changes of the object size.

View Article and Find Full Text PDF

In this paper, a novel imperceptible, fragile and blind watermark scheme is proposed for speech tampering detection and self-recovery. The embedded watermark data for content recovery is calculated from the original discrete cosine transform (DCT) coefficients of host speech. The watermark information is shared in a frames-group instead of stored in one frame.

View Article and Find Full Text PDF

Hundreds of thousands of ubiquitous sensing (US) devices have provided an enormous number of data for Information-Centric Networking (ICN), which is an emerging network architecture that has the potential to solve a great variety of issues faced by the traditional network. A Caching Joint Shortcut Routing (CJSR) scheme is proposed in this paper to improve the Quality of service (QoS) for ICN. The CJSR scheme mainly has two innovations which are different from other in-network caching schemes: (1) Two routing shortcuts are set up to reduce the length of routing paths.

View Article and Find Full Text PDF

Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network.

View Article and Find Full Text PDF

One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network.

View Article and Find Full Text PDF

Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results.

View Article and Find Full Text PDF

Because mobile ad hoc networks have characteristics such as lack of center nodes, multi-hop routing and changeable topology, the existing checkpoint technologies for normal mobile networks cannot be applied well to mobile ad hoc networks. Considering the multi-frequency hierarchy structure of ad hoc networks, this paper proposes a hybrid checkpointing strategy which combines the techniques of synchronous checkpointing with asynchronous checkpointing, namely the checkpoints of mobile terminals in the same cluster remain synchronous, and the checkpoints in different clusters remain asynchronous. This strategy could not only avoid cascading rollback among the processes in the same cluster, but also avoid too many message transmissions among the processes in different clusters.

View Article and Find Full Text PDF

The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly.

View Article and Find Full Text PDF

Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex ₁-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptimal to solutions of original sparse or low-rank problems.

View Article and Find Full Text PDF

Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI).

View Article and Find Full Text PDF

Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes.

View Article and Find Full Text PDF

The prospect of Line-of-Business Services (LoBSs) for infrastructure of Emerging Sensor Networks (ESNs) is exciting. Access control remains a top challenge in this scenario as the service provider's server contains a lot of valuable resources. LoBSs' users are very diverse as they may come from a wide range of locations with vastly different characteristics.

View Article and Find Full Text PDF

With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor.

View Article and Find Full Text PDF

Dynamic magnetic resonance imaging (MRI) has been extensively utilized for enhancing medical living environment visualization, however, in clinical practice it often suffers from long data acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t)-space measurements, commonly referred to as big data. The purpose of this work is to accelerate big medical data acquisition in dynamic MRI by developing a non-convex minimization framework.

View Article and Find Full Text PDF

Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve.

View Article and Find Full Text PDF

The design of movement trajectories for mobile sink plays an important role in data gathering for Wireless Sensor Networks (WSNs), as it affects the network coverage, and packet delivery ratio, as well as the network lifetime. In some scenarios, the whole network can be divided into subareas where the nodes are randomly deployed. The node densities of these subareas are quite different, which may result in a decreased packet delivery ratio and network lifetime if the movement trajectory of the mobile sink cannot adapt to these differences.

View Article and Find Full Text PDF