Publications by authors named "Naimul Islam"

Microplastics pollution and salinity intrusion in freshwater ecosystem is one of the worldwide climate change consequences those have negative impacts on the physiology of aquatic organisms. Hence, a 15-day experiment was carried out where Nile tilapia (Oreochromis niloticus) was exposed to different salinity gradients i.e.

View Article and Find Full Text PDF

Microplastic pollution is drastically increasing in aquatic ecosystems and it is assumed that different sizes of microplastics have diverse impacts on the physiology of aquatic organisms. Therefore, this study was intended to examine the ingestion and size specific effects of polyamide microplastic (PA-MP) on different physiological aspects such as growth, feed utilization, survivability, blood parameters and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). In a 28-day exposure, the fish were fed with different sized PA-MP with a concentration of 500 mg per kg of feed in order to simulate highly microplastic contaminated environment.

View Article and Find Full Text PDF

Background: Xanthomonas oryzae pv. oryzae is a plant pathogen responsible for causing one of the most severe bacterial diseases in rice, known as bacterial leaf blight that poses a major threat to global rice production. Even though several experimental compounds and chemical agents have been tested against X.

View Article and Find Full Text PDF

Microplastics are widespread in the marine environment, whereby the uptake of these tiny particles by organisms, can cause adverse biological responses. Plastic debris also act as a vector of many contaminants, herein depending on type, size, shape and chemical properties, possibly intensifying their effects on marine organisms. This study aimed to assess the accumulation and potential toxicity of different sizes of microplastics with and without adsorbed perfluorooctane sulfonic acid (PFOS) in the clam Scrobicularia plana.

View Article and Find Full Text PDF

This paper explores the possibility of using combined measurements of electrical impedance and changes in ultrasound time of flight for determining deep body temperature during mild hyperthermia. Simultaneous electrical impedance spectra (1 kHz-1024 kHz) and ultrasound time-of-flight measurements were made on layered sheep liver and fat tissue samples as the temperature was increased from 30-50 °C. The change in propagation velocity for 100% fat and 100% liver samples was found to vary linearly with temperature and the temperature coefficient of the time-of-flight was shown to vary linearly with the % fat in the sample (0.

View Article and Find Full Text PDF

One of the problems with tetrapolar impedance measurements is the lack of spatial sensitivity within the measured volume. In this paper we compare the sensitivity of tetrapolar measurements and the focused impedance measurements (FIM) proposed by Rabbani et al (1999 Ann. New York Acad.

View Article and Find Full Text PDF