There is now strong evidence to support the interest in using lactic acid bacteria (LAB)in particular, strains of lactococci and lactobacilli, as well as bifidobacteria, for the development of new live vectors for human and animal health purposes. LAB are Gram-positive bacteria that have been used for millennia in the production of fermented foods. In addition, numerous studies have shown that genetically modified LAB and bifodobacteria can induce a systemic and mucosal immune response against certain antigens when administered mucosally.
View Article and Find Full Text PDFFunctional foods are classified as traditional or staple foods that provide an essential nutritional level and share potentially positive effects on host health, including the reduction of disease by optimizing the immune system's ability to prevent and control infections by pathogens, as well as pathologies that cause functional alterations in the host. This chapter reviews the most recent research and advances in this area and discusses some perspectives on what the future holds in this area.
View Article and Find Full Text PDFThe characteristics of innate immunity have recently been investigated in depth in several research articles, and original findings suggest that innate immunity also has a memory capacity, which has been named "trained immunity". This notion has revolutionized our knowledge of the innate immune response. Thus, stimulation of trained immunity represents a therapeutic alternative that is worth exploring.
View Article and Find Full Text PDFThe intestinal epithelium serves as an effective barrier against the external environment, hampering the passage of potentially harmful substances (such as pathogenic microbes) that could trigger an exacerbated host immune response. The integrity of this barrier is thus essential for the maintenance of proper intestinal homeostasis and efficient protective reactions against chemical and microbial challenges. The principal consequence of intestinal barrier defects is an increase in intestinal permeability, which leads to an increased influx of luminal stressors, such as pathogens, toxins, and allergens, which in turn trigger inflammation and immune response.
View Article and Find Full Text PDFThe gut microbiota plays an important role in maintaining homeostasis in the human body, and the disruption of these communities can lead to compromised host health and the onset of disease. Current research on probiotics is quite promising and, in particular, these microorganisms have demonstrated their potential for use as adjuvants for the treatment of colorectal cancer. This review addresses the possible applications of probiotics, postbiotics, synbiotics, and next-generation probiotics in colorectal cancer research.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, the causative agent of COVID-19, now represents the sixth Public Health Emergency of International Concern (PHEIC)-as declared by the World Health Organization (WHO) since 2009. Considering that SARS-CoV-2 is mainly transmitted via the mucosal route, a therapy administered by this same route may represent a desirable approach to fight SARS-CoV-2 infection. It is now widely accepted that genetically modified microorganisms, including probiotics, represent attractive vehicles for oral or nasal mucosal delivery of therapeutic molecules.
View Article and Find Full Text PDFThis article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.
View Article and Find Full Text PDFBackground: Chronic intestinal inflammation alters host physiology and could lead to colorectal cancer (CRC). We have previously reported beneficial effects of the probiotic strain of Lactobacillus casei BL23 in different murine models of intestinal inflammation. In addition, there is an emerging interest on the potential beneficial effects of probiotics to treat CRC.
View Article and Find Full Text PDFBackground: Mechanisms underlying the transition from commensalism to virulence in Enterococcus faecalis are not fully understood. We previously identified the enterococcal leucine-rich protein A (ElrA) as a virulence factor of E. faecalis.
View Article and Find Full Text PDFSurface proteins of Gram-positive bacteria play crucial roles in bacterial adhesion to host tissues. Regarding commensal or probiotic bacteria, adhesion to intestinal mucosa may promote their persistence in the gastro-intestinal tract and their beneficial effects to the host. In this study, seven Lactococcus lactis strains exhibiting variable surface physico-chemical properties were compared for their adhesion to Caco-2 intestinal epithelial cells.
View Article and Find Full Text PDFMost bacteria of the genus Streptococcus are opportunistic pathogens, and some of them produce extracellular DNases, which may be important for virulence. Genome analyses of Streptococcus agalactiae (GBS) neonate isolate NEM316 revealed the presence of seven genes putatively encoding secreted DNases, although their functions, if any, are unknown. In this study, we observed that respiration growth of GBS led to the extracellular accumulation of a putative nuclease, identified as being encoded by the gbs0661 gene.
View Article and Find Full Text PDFLactic acid bacteria (LAB) represent a heterogeneous group of microorganisms naturally present in many foods and those have proved to be effective mucosal delivery vectors. Moreover, some specific strains of LAB exert beneficial properties (known as probiotic effect) on both human and animal health. Although probiotic effects are strain-specific traits, it is theoretically possible, using genetic engineering techniques, to design strains that can exert a variety of beneficial properties.
View Article and Find Full Text PDFBackground: The expression of vaccine antigens in lactic acid bacteria (LAB) is a safe and cost-effective alternative to traditional expression systems. In this study, we investigated i) the expression of Human papillomavirus type 16 (HPV-16) L1 major capsid protein in the model LAB Lactococcus lactis and ii) the ability of the resulting recombinant strain to produce either capsomer-or virus-like particles (VLPs).
Results And Conclusion: HPV-16 L1 gene was cloned into two vectors, pCYT and pSEC, designed for controlled intra- or extracellular heterologous expression in L.
Background: In the last years, the use of probiotics such as lactic acid bacteria (LAB) has been proposed as an attractive alternative for the management of allergic diseases. A partial prevention from sensitization to bovine beta-lactoglobulin (BLG), one of the major cows' milk allergens, could be achieved in mice after intranasal administration with a recombinant LAB strain, Lactococcus lactis, producing BLG (LL-BLG). This study aimed to evaluate the effects of the LL-BLG strain in a therapeutic protocol.
View Article and Find Full Text PDFChemokines have been described as essential mediators in leukocytes migration to inflammatory sites and to secondary lymphoid organs. Mig and IP-10 are two CXC chemokines that recruit mononuclear cells in vivo and inhibit angiogenesis. In addition to their chemotactic roles, Mig and IP-10 have also an important role in the adaptative immune response.
View Article and Find Full Text PDFIFN-gamma is a cytokine produced primarily by both T lymphocytes and natural killer cells and it is considered to be an attractive therapeutic molecule. In the present study, a DNA sequence encoding the mature murine IFN-gamma (muIFN-gamma) protein was cloned and expressed in the food-grade lactic acid bacterium Lactococcus lactis. The activity of recombinant muIFN-gamma produced by genetically engineered L.
View Article and Find Full Text PDFThe noninvasive and food-grade Gram-positive bacterium Lactococcus lactis is well adapted to deliver medical proteins to the mucosal immune system. In the last decade, the potential of live recombinant lactococci to deliver such proteins to the mucosal immune system has been investigated. This approach offers several advantages over the traditional systemic injection, such as easy administration and the ability to elicit both systemic and mucosal immune responses.
View Article and Find Full Text PDFMucosal immunity plays a major role in the prevention of infectious diseases. Genetically engineered lactic acid bacteria (LAB) have been tested in the last 10 years as safe mucosal delivery vectors. We previously showed that intranasal co-administration of recombinant lactococci displaying human papillomavirus type 16 (HPV-16) E7 antigen at its surface (LL-E7) and secreting biologically active interleukine-12 (LL-IL-12) has therapeutic effects on HPV-16-induced tumors in mice.
View Article and Find Full Text PDFThe Th1/Th2 balance deregulation toward a Th2 immune response plays a central role in allergy. We previously demonstrated that administration of recombinant Lactococcus lactis strains expressing bovine beta-lactoglobulin (BLG), a major cow's milk allergen, partially prevents mice from sensitization. In the present study, we aimed to improve this preventive effect by coadministration of L.
View Article and Find Full Text PDFCurrent strategies to prevent or treat human papillomavirus type 16 (HPV-16) infection are promising, but remain costly. More economical but efficient vaccines are thus needed. In this study, we evaluated the protective effects of mucosally coadministered live Lactococcus lactis strains expressing cell wall-anchored E7 Ag and a secreted form of IL-12 to treat HPV-16-induced tumors in a murine model.
View Article and Find Full Text PDFJ Drug Target
February 2005
The human papillomavirus type-16 (HPV-16) E7 protein is considered a major viral oncoprotein involved in cervical cancer (CxCa) and a potential candidate for the development of a vaccine against this neoplasia. Here, two lactic acid bacteria (the model one Lactococcus lactis and a probiotic one Lactobacillus plantarum) were engineered to deliver an E7 mutant protein (E7mm), which has a reduced transforming activity and consequently, could fit better to therapeutic use in humans than the native form of E7. An efficient cell-surface display of E7mm was obtained in L.
View Article and Find Full Text PDFJ Med Microbiol
May 2004
Human papillomavirus type 16 (HPV-16) is the major causative agent of cervical cancer. To date, vaccine strategies against HPV-16 are based on the ability of the E7 oncoprotein to elicit an immune response against this virus. In this study, the use of an inducible or a constitutive system to produce the HPV-16 E7 protein in Lactococcus lactis, a non-pathogenic and non-invasive Gram-positive bacterium, was compared.
View Article and Find Full Text PDFE7 oncoprotein of human papillomavirus-16 (HPV-16) is constitutively produced in cervical cancer (CxCa) and is a good candidate for the design of therapeutic vaccines. In this work, the nisin-controlled expression system was used to display the E7 protein at the cell surface of the food-grade Gram-positive bacterium Lactococcus lactis. An efficient cell wall anchoring of E7 was obtained.
View Article and Find Full Text PDFAn inducible system to improve and stabilize the production of an extremely labile protein (E7 antigen of human papillomavirus type 16) was developed in the food-grade bacterium Lactococcus lactis. A protein carrier, the staphylococcal nuclease Nuc, was fused either to N- or C-termini of E7 protein, and the resulting hybrid proteins were rescued from intracellular proteolysis but poorly secreted by L. lactis.
View Article and Find Full Text PDF