Purpose: The purpose of this study was to develop and test a programmable closed-loop system for tracking, modulating, and assessing dynamic iris behavior, including in the mid-dilated position.
Methods: A programmable closed-loop iris control system was developed by customizing an ANTERION OCT device (Heidelberg Engineering, Heidelberg, Germany). Custom software was developed to store camera and optical coherence tomography (OCT) images, track pupillary diameter (PD), control a light-emitting diode (LED), and modulate ambient lighting to maintain the iris in a dilated, constricted, or mid-dilated position in real-time.
Purpose: To assess the repeatability and agreement of ocular biometric parameters measured using the Tomey CASIA SS-1000 and Heidelberg ANTERION anterior segment optical coherence tomography (AS-OCT) devices.
Methods: Both eyes of subjects 18 years of age or older were scanned three times with the CASIA and ANTERION under standardized dark lighting. One AS-OCT image along the horizontal (temporal-nasal) meridian was analyzed per eye and per scan.
Annu Int Conf IEEE Eng Med Biol Soc
July 2019
As the number of individuals developing glaucoma is increasing, researchers and ophthalmologists are exploring new approaches to monitor intraocular pressure, which is a critical measurement for glaucoma detection. Current monitoring methods, such as implantable pressure sensors and wearable contact lenses with sensors, are being explored in eye research clinics. However, these systems currently lack in providing 24 hours data through a practical platform for large-scale use.
View Article and Find Full Text PDF