In this paper, we present a soft and moisturizing film electrode based on bacterial cellulose and Ag/AgCl conductive cloth as a potential replacement for gel electrode patches in electroencephalogram (EEG) recording. The electrode materials are entirely flexible, and the bacterial cellulose membrane facilitates convenient adherence to the skin. EEG signals are transmitted from the skin to the bacterial cellulose first and then transferred to the Ag/AgCl conductive cloth connected to the amplifier.
View Article and Find Full Text PDFRecently, disease prevention in jute plants has become an urgent topic as a result of the growing demand for finer quality fiber. This research presents a deep learning network called YOLO-JD for detecting jute diseases from images. In the main architecture of YOLO-JD, we integrated three new modules such as Sand Clock Feature Extraction Module (SCFEM), Deep Sand Clock Feature Extraction Module (DSCFEM), and Spatial Pyramid Pooling Module (SPPM) to extract image features effectively.
View Article and Find Full Text PDF