Publications by authors named "Naila Rabbani"

Glucagon-like peptide-1 (GLP-1) agonists and GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists are major treatment options for subjects with obesity and patients with type 2 diabetes mellitus (T2DM). They counter without addressing the mechanistic cause of the impaired incretin effect associated with obesity and T2DM. Incretin effect impairment is characterized by decreased secretion of incretins from enteroendocrine cells and incretin resistance of pancreatic β-cells.

View Article and Find Full Text PDF

Hyperglycemia is a risk factor for the development of insulin resistance, beta-cell glucotoxicity, and vascular complications of diabetes. We propose the hypothesis, hexokinase-linked glycolytic overload and unscheduled glycolysis, in explanation. Hexokinases (HKs) catalyze the first step of glucose metabolism.

View Article and Find Full Text PDF

The unfolded protein response (UPR) detects increased misfolded proteins and activates protein refolding, protein degradation and inflammatory responses. UPR sensors in the endoplasmic reticulum, IRE1α and PERK, bind and are activated by proteins with unexpected surface hydrophobicity, whereas sensor ATF6 is activated by proteolytic cleavage when released from complexation with protein disulfide isomerases (PDIs). Metabolic dysfunction leading to the formation of misfolded proteins with surface hydrophobicity and disruption of ATF6-PDI complexes leading to activation of UPR sensors remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Autism Spectrum Disorder (ASD) is typically diagnosed through behavioral assessments, but a study from 2018 introduced a blood biomarker diagnostic test with 88% accuracy for children aged 5-12.
  • A new multicenter study involved 478 children (311 with ASD and 167 typically developing) across various hospitals and aimed to validate similar biomarkers for a broader age range of 1.5-12 years.
  • The diagnostic algorithms showed varying accuracy rates, with a significant algorithm for 5-12-year-olds achieving 83% accuracy and adding more biomarkers increased specificity, suggesting blood tests could enhance ASD diagnosis and screening.
View Article and Find Full Text PDF

Accumulation of advanced glycation endproducts (AGEs) is linked to decline in renal function, particularly in patients with diabetes. Major forms of AGEs in serum are protein-bound AGEs and AGE free adducts. In this study, we assessed levels of AGEs in subjects with and without diabetes, with normal renal function and stages 2 to 4 chronic kidney disease (CKD), to identify which AGE has the greatest progressive change with decline in renal function and change in diabetes.

View Article and Find Full Text PDF

Mice with ectopic expression of uncoupling protein-1 (UCP1) in skeletal muscle exhibit a healthy aging phenotype with increased longevity and resistance to impaired metabolic health. This may be achieved by decreasing protein glycation by the reactive metabolite, methylglyoxal (MG). We investigated protein glycation and oxidative damage in skeletal muscle of mice with UCP1 expression under control of the human skeletal actin promoter (HSA-mUCP1) at age 12 weeks (young) and 70 weeks (aged).

View Article and Find Full Text PDF

On 20-24 September 2021, leading researchers in the field of glycation met online at the 14th International Symposium on the Maillard Reaction (IMARS-14), hosted by the authors of this introductory editorial, who are from Doha, Qatar [...

View Article and Find Full Text PDF

The study of the glyoxalase system by Thornalley and co-workers in clinical diabetes mellitus and correlation with diabetic complications revealed increased exposure of patients with diabetes to the reactive, dicarbonyl metabolite methylglyoxal (MG). Twenty-eight years later, extended and built on by Thornalley and co-workers and others, the glyoxalase system is an important pathway contributing to the development of insulin resistance and vascular complications of diabetes. Other related advances have been: characterization of a new kind of metabolic stress-'dicarbonyl stress'; identification of the major physiological advanced glycation endproduct (AGE), MG-H1; physiological substrates of the unfolded protein response (UPR); new therapeutic agents-'glyoxalase 1 (Glo1) inducers'; and a refined mechanism underlying the link of dysglycemia to the development of insulin resistance and vascular complications of diabetes.

View Article and Find Full Text PDF

Protein damage by glycation, oxidation and nitration is a continuous process in the physiological system caused by reactive metabolites associated with dicarbonyl stress, oxidative stress and nitrative stress, respectively. The term AGEomics is defined as multiplexed quantitation of spontaneous modification of proteins damage and other usually low-level modifications associated with a change of structure and function-for example, citrullination and transglutamination. The method of quantitation is stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG.

View Article and Find Full Text PDF

The recent discovery of the glucose-induced stabilization of hexokinase-2 (HK2) to proteolysis in cell dysfunction in model hyperglycemia has revealed a likely key initiating factor contributing to the development of insulin resistance and vascular complications in diabetes. Consequently, the increased flux of glucose metabolism without a change in the expression and activity of glycolytic enzymes produces a wave of increased glycolytic intermediates driving mitochondrial dysfunction and increased reactive oxygen species (ROS) formation, the activation of hexosamine and protein kinase C pathways, the increased formation of methylglyoxal-producing dicarbonyl stress, and the activation of the unfolded protein response. This is called HK2-linked glycolytic overload and unscheduled glycolysis.

View Article and Find Full Text PDF

Background: Tumor glycolysis is a target for cancer chemotherapy. Methylglyoxal (MG) is a reactive metabolite formed mainly as a by-product in anaerobic glycolysis, metabolized by glyoxalase 1 (Glo1) of the glyoxalase system. We investigated the role of MG and Glo1 in cancer chemotherapy related in multidrug resistance (MDR).

View Article and Find Full Text PDF

The dietary supplement, -resveratrol and hesperetin combination (tRES-HESP), induces expression of glyoxalase 1, countering the accumulation of reactive dicarbonyl glycating agent, methylglyoxal (MG), in overweight and obese subjects. tRES-HESP produced reversal of insulin resistance, improving dysglycemia and low-grade inflammation in a randomized, double-blind, placebo-controlled crossover study. Herein, we report further analysis of study variables.

View Article and Find Full Text PDF

Protein glycation provides a biomarker in widespread clinical use, glycated hemoglobin HbA (A1C). It is a biomarker for diagnosis of diabetes and prediabetes and of medium-term glycemic control in patients with established diabetes. A1C is an early-stage glycation adduct of hemoglobin with glucose; a fructosamine derivative.

View Article and Find Full Text PDF

The reactive dicarbonyl metabolite, methylglyoxal (MG), is increased in obesity and diabetes and is implicated in the development of insulin resistance, type 2 diabetes mellitus and vascular complications of diabetes. Dicarbonyl stress is the metabolic state of abnormal high MG concentration. MG is an arginine-directed glycating agent and precursor of the major advanced glycation endproduct, arginine-derived hydroimidazolone MG-H1.

View Article and Find Full Text PDF

The global pandemic of COVID-19 disease caused by infection with the SARS-CoV-2 coronavirus, has produced an urgent requirement and search for improved treatments while effective vaccines are developed. A strategy for improved drug therapy is to increase levels of endogenous reactive metabolites for selective toxicity to SARS-CoV-2 by preferential damage to the viral proteome. Key reactive metabolites producing major quantitative damage to the proteome in physiological systems are: reactive oxygen species (ROS) and the reactive glycating agent methylglyoxal (MG); cysteine residues and arginine residues are their most susceptible targets, respectively.

View Article and Find Full Text PDF

Introduction: Patients with diabetes have increased risk of periodontal disease, with increased risk of weakening of periodontal ligament and tooth loss. Periodontal ligament is produced and maintained by periodontal ligament fibroblasts (PDLFs). We hypothesized that metabolic dysfunction of PDLFs in hyperglycemia produces an accumulation of the reactive glycating agent, methylglyoxal (MG), leading to increased formation of the major advanced glycation endproduct, MG-H1 and PDLF dysfunction.

View Article and Find Full Text PDF

Increased protein glycation, oxidation and nitration is linked to the development of diabetic nephropathy. We reported levels of serum protein glycation, oxidation and nitration and related hydrolysis products, glycation, oxidation and nitration free adducts in patients with type 1 diabetes (T1DM) during onset of microalbuminuria (MA) from the First Joslin Kidney Study, a prospective case-control study of patients with T1DM with and without early decline in GFR. Herein we report urinary excretion of the latter analytes and related fractional excretion values, exploring the link to MA and early decline in GFR.

View Article and Find Full Text PDF

Recent research has identified glycation as a non-enzymatic post-translational modification of proteins in plants with a potential contributory role to the functional impairment of the plant proteome. Reducing sugars with a free aldehyde or ketone group such as glucose, fructose and galactose react with the N-terminal and lysine side chain amino groups of proteins. A common early-stage glycation adduct formed from glucose is N-fructosyl-lysine (FL).

View Article and Find Full Text PDF

There is considerable interest in dietary and other approaches to maintaining blood glucose concentrations within the normal range and minimizing exposure to postprandial hyperglycemic excursions. The accepted marker to evaluate the sustained maintenance of normal blood glucose concentrations is glycated hemoglobin A1c (HbA1c). However, although this is used in clinical practice to monitor glycemic control in patients with diabetes, it has a number of drawbacks as a marker of efficacy of dietary interventions that might beneficially affect glycemic control in people without diabetes.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a major blinding disease, affecting over 14% of the elderly. Risk for AMD is related to age, diet, environment, and genetics. Dietary modulation of AMD risk is a promising treatment modality, but requires appropriate animal models to demonstrate advantages of diet.

View Article and Find Full Text PDF

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides a high sensitivity, high specificity multiplexed method for concurrent detection of adducts formed by protein glycation, oxidation and nitration, also called AGEomics. Combined with stable isotopic dilution analysis, it provides for robust quantitation of protein glycation, oxidation and nitration adduct analytes. It is the reference method for such measurements.

View Article and Find Full Text PDF

Glycation, oxidation, nitration, and crosslinking of proteins are implicated in the pathogenic mechanisms of type 2 diabetes, cardiovascular disease, and chronic kidney disease. Related modified amino acids formed by proteolysis are excreted in urine. We quantified urinary levels of these metabolites and branched-chain amino acids (BCAAs) in healthy subjects and assessed changes in early-stage decline in metabolic, vascular, and renal health and explored their diagnostic utility for a noninvasive health screen.

View Article and Find Full Text PDF

Hexokinase-2 (HK2) was recently found to produce increased metabolic flux through glycolysis in hyperglycemia without concurrent transcriptional or other functional regulation. Rather, stabilization to proteolysis by increased glucose substrate binding produced unscheduled increased glucose metabolism in response to high cytosolic glucose concentration. This produces abnormal increases in glycolytic intermediates or glycolytic overload, driving cell dysfunction and vulnerability to the damaging effects of hyperglycemia in diabetes, explaining tissue-specific pathogenesis.

View Article and Find Full Text PDF

Metabolic dysfunction of endothelial cells in hyperglycemia contributes to the development of vascular complications of diabetes where increased reactive glycating agent, methylglyoxal (MG), is involved. We assessed if increased MG glycation induced proteotoxic stress, identifying related metabolic drivers and protein targets. Human aortal endothelial cells (HAECs) were incubated in high glucose concentration (20 mM versus 5 mM control) in vitro for 3-6 days.

View Article and Find Full Text PDF