Biopharmaceuticals, specifically antibody-based therapeutics, have revolutionized disease treatment. Throughout their lifecycle, these therapeutic proteins are exposed to several stress conditions, for example at interfaces, posing a risk to the drug product stability, safety and quality. Therapeutic protein adsorption at interfaces may lead to loss of active product and protein aggregation, with potential immunogenicity risks.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) encounter numerous interfaces during manufacturing, storage, and administration. While protein adsorption at the solid/liquid interface has been widely explored on model surfaces, a key challenge remains - the detection of very small amounts of adsorbed mAb directly on real medical surfaces. This study introduces a novel ELISA-based device, ELIBAG, a new tool for measuring mAb adsorption on medical bags.
View Article and Find Full Text PDFObjectives: Intratympanic injection of corticosteroids membrane after noise-induced hearing loss is an accepted alternative to general administration. We investigated the effect on hearing of a hyaluronic acid gel with liposomes loaded with dexamethasone (DexP) administered into the middle ear.
Methods: An acute acoustic trauma was performed to 13 guinea pigs for a period of 1 h on Day -2.
Hyaluronic acid liposomal gels have previously demonstrated in vivo their great potential for drug delivery. Elucidating their phase behavior and structure would provide a better understanding of their use properties. This work evaluates the microstructure and the phase behavior of mixtures of hyaluronic acid (HA) and liposomes and their impact on the vesicle mobility.
View Article and Find Full Text PDFGoals of cochlear implantation have shifted from complete insertion of the cochlear electrode array towards low traumatic insertion with minimally invasive techniques. The aim of this study was first to evaluate, in a guinea pig model of cochlear implantation, the effect of a motorized insertion technique on hearing preservation. The second goal was to study a new gel formulation containing dexamethasone phosphate loaded in liposomes (DEX-P).
View Article and Find Full Text PDFThe inner ear is one of the most challenging organs for drug delivery, mainly because of the blood-perilymph barrier. Therefore, local rather than systemic drug delivery methods are being developed for inner ear therapy. In this work, we have evaluated the benefit of a hyaluronic acid liposomal gel for sustained delivery of a corticoid to the inner ear after local injection into the middle ear in a guinea pig model.
View Article and Find Full Text PDFInner ear diseases are not adequately treated by systemic drug administration mainly because of the blood-perilymph barrier that reduces exchanges between plasma and inner ear fluids. Local drug delivery methods including intratympanic and intracochlear administrations are currently developed to treat inner ear disorders more efficiently. Intratympanic administration is minimally invasive but relies on diffusion through middle ear barriers for drug entry into the cochlea, whereas intracochlear administration offers direct access to the colchlea but is rather invasive.
View Article and Find Full Text PDFThe aim of this work was to thoroughly study the effect of liposomes on the rheological and the syringeability properties of hyaluronic acid (HA) hydrogels intended for the local administration of drugs by injection. Whatever the characteristics of the liposomes added (neutral, positively or negatively charged, with a corona of polyethylene glycol chains, size), the viscosity and the elasticity of HA gels increased in a lipid concentration-dependent manner. Indeed, liposomes strengthened the network formed by HA chains due to their interactions with this polymer.
View Article and Find Full Text PDF