The utilization of robots in computer, communication, and consumer electronics (3C) assembly has the potential to significantly reduce labor costs and enhance assembly efficiency. However, many typical scenarios in 3C assembly, such as the assembly of flexible printed circuits (FPCs), involve complex manipulations with long-horizon steps and high-precision requirements that cannot be effectively accomplished through manual programming or conventional skill-learning methods. To address this challenge, this article proposes a learning-based framework for the acquisition of complex 3C assembly skills assisted by a multimodal digital-twin environment.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
June 2023
Introducing deep learning technologies into the medical image processing field requires accuracy guarantee, especially for high-resolution images relayed through endoscopes. Moreover, works relying on supervised learning are powerless in the case of inadequate labeled samples. Therefore, for end-to-end medical image detection with overcritical efficiency and accuracy in endoscope detection, an ensemble-learning-based model with a semi-supervised mechanism is developed in this work.
View Article and Find Full Text PDF