Publications by authors named "Naijin Zhang"

This trial targeted to analyze the effects of different doses of tirofiban combined with dual antiplatelet drugs on platelet indices, vascular endothelial function, and major adverse cardiovascular events (MACE) in patients with acute ST-segment elevated myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI). A total of 180 patients with STEMI who underwent PCI were divided into Group A, Group B, and Group C (60 cases per group). Group A was given conventional medication, and Groups B and C were given a standard dose (10 μg/kg) and a high dose (20 μg/kg) of tirofiban on the basis of Group A, respectively.

View Article and Find Full Text PDF

Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor.

View Article and Find Full Text PDF
Article Synopsis
  • * Cardiomyocyte death is influenced by various programmed cell death (PCD) pathways, and abnormalities in these processes can lead to different CVDs.
  • * The review explores the mechanisms behind cardiomyocyte death and highlights potential drug therapies that aim to target and inhibit PCD to treat cardiovascular diseases.
View Article and Find Full Text PDF

Importance: The sustainable effectiveness and safety of a nonphysician community health care practitioner-led intensive blood pressure intervention on cardiovascular disease have not, to the authors' knowledge, been studied, especially in the older adult population.

Objective: To evaluate such a multifaceted model with a more stringent blood pressure treatment goal (<130/80 mm Hg) among patients aged 60 years and older with hypertension.

Design, Setting, And Participants: This was a 48-month follow-up study of the China Rural Hypertension Control Project (CRHCP), an open-cluster randomized clinical trial, conducted from 2018 to 2023.

View Article and Find Full Text PDF

p53 regulates multiple signaling pathways and maintains cell homeostasis under conditions of DNA damage and oxidative stress. Although USP7 has been shown to promote p53 stability via deubiquitination, the USP7-p53 activation mechanism has remained unclear. Here, we propose that DNA damage induces reactive oxygen species (ROS) production and activates ATM-CHK2, and CHK2 then phosphorylates USP7 at S168 and T231.

View Article and Find Full Text PDF

Objective: The purpose of this systematic review was to examine the association between folic acid supplementation during pregnancy and the risk of preeclampsia.

Methods: Relevant studies were included by searching Embase, PubMed, Scope, Web of science, Cochrane Library databases. Studies were reviewed according to prespecified inclusion and exclusion criteria.

View Article and Find Full Text PDF

Background: Diabetic vascular remodeling is the most important pathological basis of diabetic cardiovascular complications. The accumulation of advanced glycation end products (AGEs) caused by elevated blood glucose promotes the proliferation and migration of vascular smooth muscle cells (VSMCs), leading to arterial wall thickening and ultimately vascular remodeling. Therefore, the excessive proliferation and migration of VSMCs is considered as an important therapeutic target for vascular remodeling in diabetes mellitus.

View Article and Find Full Text PDF
Article Synopsis
  • * The enzyme ATG7 is essential for starting autophagy by helping create and expand the membranes of autophagosomes.
  • * Recent research shows ATG7's role in cell functions, disease progression, and its regulation through genetic and epigenetic changes, particularly in relation to aging-related diseases.
View Article and Find Full Text PDF

Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux.

View Article and Find Full Text PDF

Aim Of The Study: This study analyzes research on TCM formulae in CHD over the past 30 years, using VOSviewer and CiteSpace. It aims to highlight key trends and hotspots in the field.

Materials And Methods: The core database of Web of Science was collected, and the search time range was from the establishment of the database to the present (August 2023) for the literature related to the study of TCM prescriptions in CHD, and the information on the number of literature, countries, journals, authors, institutions, keywords were summarized by applying the software VOSviewer and CiteSpace.

View Article and Find Full Text PDF

Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others.

View Article and Find Full Text PDF

Background: Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system.

View Article and Find Full Text PDF

Oxidative stress-induced autophagy helps to prevent cellular damage and to maintain homeostasis. However, the regulatory pathway that initiates autophagy remains unclear. We previously showed that reactive oxygen species (ROS) function as signaling molecules to activate the ATM-CHK2 pathway and promote autophagy.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure.

View Article and Find Full Text PDF

Objective: Tai Chi (TC) is a complementary therapy for knee osteoarthritis (KOA). Although systematic reviews (SRs) and meta-analyses (Mas) of efficacy studies have been published, the results remain uncertain, and their quality has not yet been fully evaluated. Here, we summarize the existing SRs/Mas, evaluate their quality and level of evidence, and provide a reference for the effectiveness of TC.

View Article and Find Full Text PDF

As a widely used lipid-lowering drug in clinical practice, atorvastatin is widely recognized for its role in protecting vascular endothelium in the cardiovascular system. However, a clear mechanistic understanding of its action is lacking. Here, we found that atorvastatin counteracted angiotensin II-induced vascular endothelial injury in mice with hypertension.

View Article and Find Full Text PDF

The ubiquitin-proteasome system is a crucial mechanism for regulating protein levels in cells, with substrate-specific E3 ubiquitin ligases serving as an integral component of this system. Among these ligases are SMAD-specific E3 ubiquitin-protein ligase 1 (SMURF1) and SMAD-specific E3 ubiquitin-protein ligase 2 (SMURF2), which belong to the neural precursor cell-expressed developmentally downregulated 4 (NEDD4) subfamily of Homologous to E6-AP COOH terminus (HECT)-type E3 ligases. As E3 ligases, SMURFs have critical functions in regulating the stability of multiple proteins, thereby maintaining physiological processes such as cell migration, proliferation, and apoptosis.

View Article and Find Full Text PDF

The sarcomeric interaction of α-myosin heavy chain (α-MHC) with Titin is vital for cardiac structure and contraction. However, the mechanism regulating this interaction in normal and failing hearts remains unknown. Lactate is a crucial energy substrate of the heart.

View Article and Find Full Text PDF

NEDD4 family represent an important group of E3 ligases, which regulate various cellular pathways of cell proliferation, cell junction and inflammation. Emerging evidence suggested that NEDD4 family members participate in the initiation and development of tumor. In this study, we systematically investigated the molecular alterations as well as the clinical relevance regarding NEDD4 family genes in 33 cancer types.

View Article and Find Full Text PDF

Aims: To understanding the net regional, national, and economic effect of global population ageing on diabetes and its trends during 1990 and 2019 worldwide.

Methods: We employed a decomposition method to estimate the impact of population ageing on diabetes-related disability-adjusted life years (DALYs) and total deaths in 204 countries from 1990 to 2019 at the global, regional, and national level. This method separated the net effect of population ageing from population growth and changes in mortality.

View Article and Find Full Text PDF

Post-translational modifications regulate numerous biochemical reactions and functions through covalent attachment to proteins. Phosphorylation, acetylation and ubiquitination account for over 90% of all reported post-translational modifications. As one of the tyrosine protein kinases, spleen tyrosine kinase (SYK) plays crucial roles in many pathophysiological processes and affects the pathogenesis and progression of various diseases.

View Article and Find Full Text PDF

Background: Endothelial injury caused by Type 2 diabetes mellitus (T2DM) is considered as a mainstay in the pathophysiology of diabetic vascular complications (DVCs). However, the molecular mechanism of T2DM-induced endothelial injury remains largely unknown. Here, we found that endothelial WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) act as a novel regulator for T2DM-induced vascular endothelial injury through modulating ubiquitination and degradation of DEAD-box helicase 3 X-linked (DDX3X).

View Article and Find Full Text PDF

Oncogenic stress induces DNA damage repair (DDR) that permits escape from mitotic catastrophe and allows early precursor lesions during the evolution of cancer. SAMHD1, a dNTPase protecting cells from viral infections, has been recently found to participate in DNA damage repair process. However, its role in tumorigenesis remains largely unknown.

View Article and Find Full Text PDF

Background: With the development of technology and the renewal of traditional Chinese medicine (TCM) diagnostic equipment, artificial intelligence (AI) has been widely applied in TCM. Numerous articles employing this technology have been published. This study aimed to outline the knowledge and themes trends of the four TCM diagnostic methods to help researchers quickly master the hotspots and trends in this field.

View Article and Find Full Text PDF