Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane's external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols.
View Article and Find Full Text PDFMembranes (Basel)
December 2022
Water scarcity is an increasing problem on every continent, which instigated the search for novel ways to provide clean water suitable for human use; one such way is desalination. Desalination refers to the process of purifying salts and contaminants to produce water suitable for domestic and industrial applications. Due to the high costs and energy consumption associated with some desalination techniques, membrane-based technologies have emerged as a promising alternative water treatment, due to their high energy efficiency, operational simplicity, and lower cost.
View Article and Find Full Text PDFPrediction of thermophysical properties of heavy hydrocarbons is important because of the recent increased interest in the extraction of heavy and shale oil to meet the global energy demand. Carrying out experimental work, such as determining the critical properties of heavy hydrocarbons, is challenging due to the possibility of thermal degradation during experimentation. This study focuses on the use of molecular simulations, specifically canonical molecular dynamics, to predict the critical properties of three hydrocarbons: -decane (-C10), -pentadecane (-C15), and -eicosane (-C20).
View Article and Find Full Text PDFInternal concentration polarization (ICP) represents a serious challenge in forward osmosis (FO) desalination since it causes a significant decline in the water flux across the membrane. Mitigation of ICP is cumbersome since the phenomenon occurs within the membrane porous support layer and mitigation procedures such as inducing turbulence or changing the hydrodynamic conditions tend to be ineffective. In this study, the effect of 40 kHz ultrasound on FO desalination of synthesized brackish and seawater was investigated.
View Article and Find Full Text PDF