Colistin is considered one of the most effective antibiotics against gram-negative bacteria. However, nephrotoxicity is one of the dose-limiting factors in its treatment. This study aimed to evaluate the outcome of omega-3 nanoemulsion against colistin-induced nephrotoxicity and its possible underlying mechanism.
View Article and Find Full Text PDFSeveral diseases, including both noninfectious diseases and bacterial and viral diseases, are associated with the ABO and RH blood group systems. Previous studies have shown a link between blood type and the probability of coronavirus disease 2019 (COVID-19) infection. In this study, we aimed to explore the correlation between deaths caused by COVID-19 and ABO and RhD blood types in Saudi Arabia.
View Article and Find Full Text PDFMalaria is a parasitic infection that may result in an acute, life-threatening illness. It is a major public health problem in the tropical world. The disease is caused by the parasites of the genus and is transmitted by female mosquitoes.
View Article and Find Full Text PDFBackground: New Delhi metallo-beta-lactamase-1 (NDM1) confers resistance to several bacterial species against a broad range of beta-lactam antibiotics and turning them into superbugs that pose a significant threat to healthcare systems worldwide. As such, it is a potentially relevant biological target for counteracting bacterial infections. Given the lack of effective treatment options against NDM1 producing bacteria, finding a reliable inhibitor for the NDM1 enzyme is crucial.
View Article and Find Full Text PDFBackground: This research evaluated the most visible symptoms associated with coronavirus (COVID-19) vaccines among residents in Makkah of Saudi Arabia.
Methods: A cross-sectional study was conducted in 2021 among a representative sample of residents receiving COVID-19 vaccination at King Abdullah Medical City, Al Ukayshiyyah, and Umm Al-Qura University vaccination centers. A total of 805 participants selected by a census sampling method were included.
is one of the major precarious pathogens accountable for over 1.2 million fatalities annually. The key drivers for pneumococcal vaccine development involve high morbidity and mortality in over one million cases, especially in very young children and the elderly.
View Article and Find Full Text PDFBackground: Surgical site infections (SSIs), especially when caused by multidrug-resistant (MDR) bacteria, are a major healthcare concern worldwide. For optimal treatment and prevention of antimicrobial resistance, it is important for clinicians to be aware of local drug-resistant bacterial pathogens that cause SSIs.
Objective: To determine the frequency patterns of drug-resistant bacterial strains causing SSIs at a tertiary care hospital in Saudi Arabia.
Purpose: () is a common causative pathogen in healthcare settings and displays increasing levels of resistance to common antimicrobial drugs. Its capacity to resist has been reported in multiple locations across the world. This study evaluates current levels of antibiotic resistance and seeks to understand antibiotic resistance patterns in the context of the clinical isolates of .
View Article and Find Full Text PDFThe SARS-CoV-2 spike (S) glycoprotein with its mobile receptor-binding domain (RBD), binds to the human ACE2 receptor and thus facilitates virus entry through low-pH-endosomal pathways. The high degree of SARS-CoV-2 mutability has raised concern among scientists and medical professionals because it created doubt about the effectiveness of drugs and vaccinations designed specifically for COVID-19. In this study, we used computational saturation mutagenesis approach, including structure-based free energy calculations to analyse the effects of the missense mutations on the SARS-CoV-2 S-RBD stability and the S-RBD binding affinity with ACE2 at three different pH (pH 4.
View Article and Find Full Text PDFCellulases are among the most in-demand bioprocess enzymes, and the high cost of production, combined with their low enzymatic activity, is the main constraint, particularly in the biofuels industry. As a result, low-cost enzyme production modes with high activity and stability have emerged as the primary focus of research. Here, a method for producing a graphene like carbon nanostructure (GLCNs) has been investigated utilizing paddy straw (Ps), and its physicochemical characteristics have been examined using a variety of techniques including XRD, FT-IR, SEM and TEM.
View Article and Find Full Text PDFBiotechnol Genet Eng Rev
October 2023
High demand of bioactive molecules (food additives, antibiotics, plant growth enhancers, cosmetics, pigments and other commercial products) is the prime need for the betterment of human life where the applicability of the synthetic chemical product is on the saturation due to associated toxicity and ornamentations. It has been noticed that the discovery and productivity of such molecules in natural scenarios are limited due to low cellular yields as well as less optimized conventional methods. In this respect, microbial cell factories timely fulfilling the requirement of synthesizing bioactive molecules by improving production yield and screening more promising structural homologues of the native molecule.
View Article and Find Full Text PDFBiotechnol Genet Eng Rev
October 2023
The ongoing COVID-19 spreads worldwide with the ability to evolve in diverse human populations. The nucleocapsid (N) protein is one of the mutational hotspots in the SARS-CoV-2 genome. The N protein is an abundant RNA-binding protein critical for viral genome packaging.
View Article and Find Full Text PDFThe SARS-CoV-2 lifecycle is dependent on the host metabolism machinery. It upregulates the PPARα and PPARγ genes in lipid metabolism, which supports the essential viral replication complex including lipid rafts and palmitoylation of viral protein. The use of PPAR ligands in SARS-CoV-2 infection may have positive effects by preventing cytokine storm and the ensuing inflammatory cascade.
View Article and Find Full Text PDFInfectious disease is one of the greatest causes of morbidity and mortality worldwide, and with the emergence of antimicrobial resistance, the situation is worsening. In order to prevent this crisis, antimicrobial resistance needs to be monitored carefully to control the spread of multidrug-resistant bacteria. Therefore, in this study, we aimed to determine the prevalence of infection caused by and investigate the antimicrobial profile pattern of in the last eleven years.
View Article and Find Full Text PDFMicroorganisms have been extensively studied and used to produce a wide range of enzymes and bioactive substances for a number of uses. Cellulases have also been widely used for a variety of bioprocessing and biotransformation purposes and are acknowledged as the essential enzymes for industrial applications. Broad industrial applications and huge demand essentially require mass-scale and low-cost production of cellulase enzyme.
View Article and Find Full Text PDFPlant fractions have a diversity of biomolecules that can be used to make complicated reactions for the bioactive fabrication of metal nanoparticles (NPs), in addition to being beneficial as antioxidant medications or dietary supplements. The current study shows that Urtica dioica (UD) and biologically synthesized silver nanoparticles (AgNPs) of UD have antibacterial and antioxidant properties against bacteria (Escherichia coli and Pseudomonas putida) and Drosophila melanogaster (Oregon R+). According to their ability to scavenge free radicals, DPPH, ABTS, TFC, and TPC initially estimated the antioxidant potential of UD and UD AgNPs.
View Article and Find Full Text PDFBackground: The number of reports of menstrual changes after COVID-19 vaccination in the Saudi population is still unknown. Therefore, this study aimed to assess the effect of the COVID-19 vaccine(Pfizer, AstraZeneca, and Moderna) on the menstrual cycle among females in Saudi Arabia.
Methods: This descriptive cross-sectional study was conducted in Saudi Arabia at Umm Al-Qura University (UQU) from August 2021 to February 2022.
The COVID-19 outbreak brought on by the SARS-CoV-2 virus continued to infect a sizable population worldwide. The SARS-CoV-2 nucleocapsid (N) protein is the most conserved RNA-binding structural protein and is a desirable target because of its involvement in viral transcription and replication. Based on this aspect, this study focused to repurpose antiviral compounds approved or in development for treating COVID-19.
View Article and Find Full Text PDFThe azo dye orange II is used extensively in the textile sector for coloring fabrics. High concentrations of it are released into aqueous environments through textile effluents. Therefore, its removal from textile wastewater and effluents is necessary.
View Article and Find Full Text PDFThe rise of methicillin-resistant (MRSE) makes it difficult to treat infections that increase morbidity and mortality rates in various parts of the world. The study's objectives include identifying the clinical prevalence, antibiogram profile, and Gompertz growth kinetics of MRSE treated with synthetically created nanoparticles of rosin obtained from . A total of 64 of 200 clinical isolates of (32% of the total) displayed sensitivity (40.
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2022
Water pollution due to textile dyes is a serious threat to every life form. Bacteria can degrade and detoxify toxic dyes present in textile effluents and wastewater. The present study aimed to evaluate the degradation potential of eleven bacterial strains for azo dye methyl red.
View Article and Find Full Text PDFIn Covid-19, the pathological effect of SARS-CoV-2 infection is arbitrated through direct viral toxicity, unusual immune response, endothelial dysfunction, deregulated renin-angiotensin system [RAS], and thrombo-inflammation, leading to acute lung injury (ALI), with a succession of acute respiratory distress syndrome (ARDS) in critical conditions. C1 esterase inhibitor (C1INH) is a protease inhibitor that inhibits the spontaneous activation of complement and contact systems and kinin pathway, clotting, and fibrinolytic systems. Therefore, targeting the complement system through activation of C1INH might be a novel therapeutic modality in the treatment of Covid-19.
View Article and Find Full Text PDFThis study was aimed at determining the prevalence estimate and association of transfusion-transmitted infections (TTIs) with ABO and Rh blood groups among blood donors at the King Faisal Specialist Hospital and Research Center (KFSH & RC) in the western region of Saudi Arabia. A retrospective study was conducted at the blood bank center of KFSH and RC from 1 January 2013 to 31 December 2019. Data on ABO and Rh blood group testing, serological testing, molecular investigations, serological assays, nucleic acid testing (NATs), and socio-demographic information were gathered.
View Article and Find Full Text PDFWe previously identified a novel thiol-disulfide oxidoreductase, SdbA, in that formed disulfide bonds in substrate proteins and played a role in multiple phenotypes. In this study, we used mutational, phenotypic, and biochemical approaches to identify and characterize the redox partners of SdbA. Unexpectedly, the results showed that SdbA has multiple redox partners, forming a complex oxidative protein-folding pathway.
View Article and Find Full Text PDF