Complete transcriptome profiling of contractile smooth muscle cells (SMCs) differentiated from embryonic stem cells is crucial for the characterization of smooth muscle gene expression signatures and will contribute to defining biological and physiological processes in these cells. We have generated a transgenic embryonic stem cell line expressing both the puromycin acetyl transferase and enhanced green fluorescent protein cassettes under the control of the Acta2 promoter. Applying a specific monolayer culture protocol using retinoic acid, a puromycin-resistant and enhanced green fluorescent protein-positive Acta2(+) SMC population of 95% purity was isolated.
View Article and Find Full Text PDFA variety of embryonic and adult stem cell lines require an initial co-culturing with feeder cells for non-differentiated growth, self renewal and maintenance of pluripotency. However for many downstream ES cell applications the feeder cells have to be considered contaminations that might interfere not just with the analysis of experimental data but also with clinical application and tissue engineering approaches. Here we introduce a novel technique that allows for the selection of pure feeder-freed stem cells, following stem cell proliferation on feeder cell layers.
View Article and Find Full Text PDFIdentification of signalling cascades involved in cardiomyogenesis is crucial for optimising the generation of cardiomyocytes from embryonic stem cells (ES cells) (in vitro). We used a transgenic ES cell lineage expressing enhanced green fluorescent protein (EGFP) under the control of the alpha-myosin heavy chain (alpha-MHC) promoter (palphaMHC-EGFP) to investigate the effects of 33 small molecules interfering with several signalling cascades on cardiomyogenesis. Interestingly, the L-Type Ca2+ channel blocker Verapamil as well as Cyclosporin, an inhibitor of the protein phosphatase 2B, exerted the most striking pro-cardiomyogenic effect.
View Article and Find Full Text PDF