Objective: Non-alcoholic fatty liver disease (NAFLD) is strongly associated with hyperlipidemia, which is closely related to high levels of sugar and fat. β-sitosterol is a natural product with significant hypolipidemic and cholesterol-lowering effects. However, the underlying mechanism of its action on aquatic products is not completely understood.
View Article and Find Full Text PDFIn recent years, the potent influence of tocotrienol (T3) on diminishing blood glucose and lipid concentrations in both (rats) and (humans) has been established. However, the comprehensive exploration of tocotrienol's hypolipidemic impact and the corresponding mechanisms in aquatic species remains inadequate. In this study, we established a zebrafish model of a type 2 diabetes mellitus (T2DM) model through high-fat diet administration to zebrafish.
View Article and Find Full Text PDFThe microbial community structure in aquaculture water plays an important role in the intestinal microbial diversity of aquatic animals. The Chinese soft-shelled turtle (SST) () is an important aquaculture species of high economic value in the Asia-Pacific region. An intuitive understanding of the microbial diversity and abundances of SST aquaculture is crucial for comprehending these ecosystems.
View Article and Find Full Text PDFLong-term or excessive oxidative stress can cause serious damage to fish. Squalene can be added to feed as an antioxidant to improve the body constitution of fish. In this study, the antioxidant activity was detected by 2,2-diphenyl-1-acrylhydrazyl (DPPH) test and fluorescent probe (dichloro-dihydro-fluorescein diacetate).
View Article and Find Full Text PDFAs one of the most successful stories in modern medicine, total joint arthroplasty (TJA) is performed several million times worldwide every year. However, more than 20% of patients will suffer from aseptic loosening (AL) following periprosthetic osteolysis (PPO) in the next few years. Unfortunately, the only effective treatment for PPO, , revision surgery, can cause great surgical trauma.
View Article and Find Full Text PDFTocotrienols have strong antioxidant properties; however, tocotrienol has not been investigated in detail in aquatic products. In this study, the anti-inflammatory and antioxidant activities of the tocotrienol-rich fraction from rice bran oil and its potential mechanism were verified in a zebrafish CuSO inflammation model. The in vitro antioxidant activity was evaluated using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) stable radical method.
View Article and Find Full Text PDFLargemouth bass ranavirus (LMBV) infects largemouth bass, leading to significant mortality and economic losses. There are no safe and effective drugs against this disease. Oral vaccines that directly target the intestinal mucosal immune system play an important role in resisting pathogens.
View Article and Find Full Text PDFβ-Sitosterol, which is used extensively in pharmaceuticals, nutraceuticals, and cosmetics, has high nutritional value along with immunomodulatory and anti-inflammatory properties. In this study, we investigated the antioxidant and anti-inflammatory effects of β-sitosterol in zebrafish and explored the associated molecular mechanisms. In an in vivo antioxidant experiment, zebrafish () larvae were treated with different concentrations of β-sitosterol and then exposed to a nonlethal concentration of CuSO to induce oxidative stress.
View Article and Find Full Text PDFBackground: Wear particles-induced osteolysis is a major long-term complication after total joint arthroplasty. Up to now, there is no effective treatment for wear particles-induced osteolysis except for the revision surgery, which is a heavy psychological and economic burden to patients. A metabolite of gut microbiota, short chain fatty acids (SCFAs), has been reported to be beneficial for many chronic inflammatory diseases.
View Article and Find Full Text PDFBackground: Aseptic Loosening (AL) following periprosthetic osteolysis is the main long-term complication after total joint arthroplasty (TJA). However, there is rare effective treatment except for revision surgery, which is costly and painful to the patients. In recent years, the ketone body β-hydroxybutyrate (BHB) has attracted much attention and has been proved to be beneficial in many chronic diseases.
View Article and Find Full Text PDFBackground: In patients with traumatic brain injury (TBI) combined with long bone fracture, the fracture healing is always faster than that of patients with single fracture, which is characterized by more callus growth at the fracture site and even ectopic ossification. Exosomes are nanoscale membrane vesicles secreted by cells, which contain cell-specific proteins, miRNAs, and mRNAs.
Methods: In this study, we used exosomes as the entry point to explore the mechanism of brain trauma promoting fracture healing.
Wear debris-induced osteolysis and ensuing aseptic loosening is the main cause of implant failure and revision surgery. Wear debris-induced inflammatory response plays key roles in peri-implant osteolysis. Recently, substantial of evidence suggests that hydrogen sulfide (H S), the third gasotransmitter, is a critical player regulating inflammation.
View Article and Find Full Text PDFPurpose: In the degenerated intervertebral disc (IVD), matrix acidity challenges transplanted bone marrow mesenchymal stem cells (BMSCs). The Ca2+-permeable acid-sensing ion channel 1a (ASIC1a) is responsible for acidosis-mediated tissue injury. The aim of our study was to confirm whether ASIC1a activation induces BMSC apoptosis under conditions that mimic the acidic microenvironment of the degenerated IVD.
View Article and Find Full Text PDFPosterior pilon fracture is a common type of intraarticular fracture encountered in clinical practice. The treatment of this fracture pattern has been increasingly reported. However, methods for minimizing the associated surgical trauma and achieve effective fixation still require to be established.
View Article and Find Full Text PDFA rat model of tendon repair was established to investigate the effects of hydrogen water on tendon adhesion reduction. Thirty-six Sprague Dawley rats were randomly divided into a normal saline (NS) group and a hydrogen water (HS) group according to the processing reagents after a tendon repairing operation. Pre- and postoperative superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in subjects' serum were observed.
View Article and Find Full Text PDFFe₃O₄ nanoparticles (Fe₃O₄ NPs) have been used for medical and drug applications, although the mechanisms of cellular uptake and transport need to be further evaluated under inflammatory conditions. In the present study, we investigated the uptake of Fe₃O₄ NPs (20, 50, 100, and 200 nm) by intestinal epithelial cells under inflammatory conditions via the light scattering of flow cytometry and inductively coupled plasma mass spectrometry (ICP-MS) techniques. The results of the correlation analysis indicated that the uptake ratios of Fe₃O₄ NPs by intestinal epithelial cells under inflammatory conditions were higher than those under the control conditions.
View Article and Find Full Text PDFMacrophage apoptosis in interface membrane, which occurs through either death receptor, mitochondrion, or endoplasmic reticulum (ER) stress pathways, has been suggested to play an important role in promoting osteolysis. However, how and why macrophage apoptosis originates and the correlation among these apoptotic pathways is not yet clear. The objective of this study was to identify the apoptotic mechanism of macrophages, and to explore the relationship between the apoptotic pathways and progression of osteolysis.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic inflammatory disease which results in progressive destruction of the joint. In this study, we examined if the hydrogen could inhibit inflammation in a mouse model of collagen-induced arthritis (CIA) via oxidative stress on RA-FLSs. Moreover, to identify the mechanisms of action, we evaluated the effect of hydrogen on RA-FLSs development and the expression of pro-inflammatory cytokines and signaling pathways.
View Article and Find Full Text PDFAseptic loosening, ascribes to particle induced osteolysis, is the most common reason for total joint arthroplasty failure. Wear particles, liberated from the surface of prostheses, mediate the expression of inflammatory cytokines in macrophages and increase the osteoclastogenesis. However, it remains unclear how macrophages can recognize wear particles and be induced by wear particles.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2016
Peri-prosthetic osteolysis and the consequent aseptic loosening constitute the most common reason for total joint arthroplasty failure and surgical revision. Although numerous studies suggest that pro-inflammatory cytokines induced by wear particles is involved in the pathological process of aseptic loosening, the underlying mechanism linking wear particles to pro-inflammatory cytokines remains to be illustrated. In the present study, we investigated the effect of autophagy on TNF-α secretion induced by TiAl6V4 particles (TiPs) in macrophages and in a calvarial resorption animal model.
View Article and Find Full Text PDFWear particle-induced osteolysis is the leading cause of aseptic loosening, which is the most common reason for THA (total hip arthroplasty) failure and revision surgery. Although existing studies suggest that osteoblast apoptosis induced by wear debris is involved in aseptic loosening, the underlying mechanism linking wear particles to osteoblast apoptosis remains almost totally unknown. In the present study, we investigated the effect of autophagy on osteoblast apoptosis induced by CoCrMo metal particles (CoPs) in vitro and in a calvarial resorption animal model.
View Article and Find Full Text PDFWear particle-induced osteolysis is a major cause of aseptic loosening, which is one of the most common reasons for total hip arthroplasty (THA) failure. Previous studies have shown that the expression of Receptor activation of nuclear factor (NF)-kB (RANKL) by fibroblasts in periprosthetic membrane played a crucial role in wear particle-induced osteolysis. However, the underlying mechanism of RANKL expression remains largely unknown.
View Article and Find Full Text PDFWear particle-induced osteolysis is a major cause of aseptic loosening, which is one of the most common reasons for total hip arthroplasty (THA) failure. Previous studies have shown that the synovial fibroblasts present in the periprosthetic membrane are important targets of wear debris during osteolysis. However, the interaction mechanisms between the wear debris and fibroblasts remain largely unknown.
View Article and Find Full Text PDF