Nanozymes, as nanomaterials with natural enzyme activities, have been widely applied to deliver various therapeutic agents to synergistically combat the progression of malignant tumors. However, currently common inorganic nanozyme-based drug delivery systems still face challenges such as suboptimal biosafety, inadequate stability, and inferior tumor selectivity. Herein, a super-stable amino acid-based metallo-supramolecular nanoassembly (FPIC NPs) with peroxidase (POD)- and glutathione oxidase (GSHOx)-like activities was fabricated via Pt-driven coordination co-assembly of l-cysteine derivatives, the chemotherapeutic drug curcumin (Cur), and the photosensitizer indocyanine green (ICG).
View Article and Find Full Text PDFIonogels prepared from ionic liquid (IL) have the characteristics of nonevaporation and stable performance relative to traditional hydrogels. However, the conductivities of commonly used ionogels are at very low relative to traditional hydrogels because the large sizes of the cation and anion in an IL impedes ion migration in polymer networks. In this study, ultradurable ionogels with suitable mechanical properties and high conductivities are prepared by impregnating IL into a safe, environmentally friendly water-based polyurethane (WPU) network by mimicking the ion transport channels in the phospholipid bilayer of the cell membrane.
View Article and Find Full Text PDFFlexible biomimetic sensors have encountered a bottleneck of sensitivity and durability, as the sensors must directly work within complex body fluid with ultra-trace biomarkers. In this work, a wearable electrochemical sensor on a modified silk fibroin substrate is developed using gold nanoparticles hosted into N-doped porous carbonizated silk fibroin (AuNPs@CSF) as active materials. Taking advantage of the inherent biocompatibility and flexibility of CSF, and the high stability and enzyme-like catalytic activity of AuNPs, AuNPs@CSF-based sensor exhibits durable stability and superior sensitivity to monitor HO released from cancer cell (4T1) and glucose in sweat.
View Article and Find Full Text PDFA portable sensor for visual monitoring of Fe and HO, two-dimensional CoO modified by nano-IrO (IrO@2D CoO) was prepared in this work, for the first time, with the help of microwave radiation at 140 °C, which was further stabilized onto common test strips. The present IrO@2D CoO possessed superior dual-function enzyme-like activity with low toxicity and excellent biocompatibility. Especially, trace Fe and HO could exclusively alter their enzyme-like catalytic activity with discriminating hyperchromic or hypochromic effect, i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2022
Nanorobots hold great promise for integrated drug delivery systems that are responsive to molecular triggers. Herein, we successfully developed an automatic smart bionanorobot that has transport capability and recognizes and removes zinc ions from poisoned cells based on nanoscale polyhedral oligomeric silsesquioxane molecules. This intelligent bionanorobot can easily move inside and outside the cell and find zinc ions owing to its highly selective recognition to zinc ions and high cell permeability, especially the well-combined high penetration and strong binding energy.
View Article and Find Full Text PDFTwo-dimensional transition metal dichalcogenides have attracted widespread attention in cancer theranostics due to their high specific surface area and excellent photothermal conversion properties. However, their dimensions and biodegradability have limited the exploration of the therapeutic properties of transition metal dichalcogenides. Herein, we explore the mechanism of the keratin α-helix-to-random coil transition, as an actuation mechanism for the controllable design and precise synthesis of two-dimension copper sulfide nanoflakes (CuS NFs) with high absorption in the NIR-II window.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2022
As a kind of reactive oxygen species, peroxynitrite is related to various diseases closely such as cancer and neurodegenerative diseases. Constructing probes with highly specific ability and a wide linear detection range for peroxynitrite detection is crucial for understanding the pathogenesis of related diseases and optimizing treatments. In this work, we developed a novel luminescent ratiometric fluorescence nanoprobe (PC-CDs) based on carbon dots and phycocyanin.
View Article and Find Full Text PDFSolid photothermal materials with favorable biocompatibility and modifiable mechanical properties demonstrate obvious superiority and growing demand. In this work, polydopamine (PDA) induced functionalization of regenerated silk fibroin (RSF) fibers has satisfactory photothermal conversion ability and flexibility. Based on multilevel engineering, RSF solution containing PDA nanoparticles is wet spun to PDA-incorporating RSF (PDA@RSF) fibers, and then the fibers are coated with PDA via oxidative self-polymerization of dopamine to form PDA@RSF-PDA (PRP) fibers.
View Article and Find Full Text PDFA compact evanescent wave detection platform (EWDP) is developed for the detection of fluorescence gold nanoclusters. The EWDP employs a simple optical system and a Si-based photodetector SOP-1000 assembly to improve the optical efficiency and detection sensitivity. A microfluidic sample cell is also used to decrease the amount of analyte to 200 μL (The volume of sample cell is really about 30 μL).
View Article and Find Full Text PDFBiomacromolecules
December 2021
Microneedles (MNs) have attracted considerable attention in the pharmaceutical field as a minimally invasive delivery alternative to hypodermic needles. Current material systems of MNs have gradually shifted from metals, ceramics, and silicon to polymer in consideration of toughness and drug loading capacity. Silk fibroin (SF) is considered one of the most promising alternatives because it combines the ability to maintain the activity of biomolecules, adjustable mechanical strength, and excellent biocompatibility.
View Article and Find Full Text PDFFlexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metal-doped porous carbon as electrode material. The gold nanoparticles@N-doped carbon in situ are prepared using wool keratin as both a novel carbon precursor and a stabilizer. The conducting electrode material is fabricated at 500 °C under customized parameters, which mimics A-B type (two different repeating units) polymeric material and displays excellent deprotonation performance (pH sensitivity).
View Article and Find Full Text PDFPowering implanted medical devices (IMDs) is a long-term challenge since their use in biological environments requires a long-term and stable supply of power and a biocompatible and biodegradable battery system. Here, silk fibroin-based ion-exchange membranes are developed using bionics principles for reverse electrodialysis devices (REDs). Silk fibroin nanofibril (SNF) membranes are negatively and positively modified, resulting in strong cation and anion selectivity that regulates ion diffusion to generate electric power.
View Article and Find Full Text PDFTransmission of energy and signals through human skin is critically important for implantable devices. Because near-infrared (NIR) light can easily penetrate through human skin/tissue, in this study we report on silk fibroin (SF) up-conversion photonic amplifiers (SFUCPAs) integrated into optoelectronic devices, which provide a practical approach for subcutaneous charging and communication NIR lasers. SFUCPAs achieve a 4 times higher fluorescence than the control, which gives rise to a 47.
View Article and Find Full Text PDFThe rapid capacity loss caused by the shuttling effect of polysulfides is one of the great challenges of Li-S batteries. In this work, we adopted a simple solid-phase sintering method to synthesize titanium disulfide (TiS2) and further demonstrated it as a superior modifier of separators for Li-S batteries. Two commonly adopted modification processes of separators, including vacuum filtration (VF) and slurry casting (SC) have been used to prepare TiS2/Celgard separators.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2021
NiCoAl layered double hydroxide nanosheets (NiCoAl-LDHNs) were prepared by a one-step solvothermal method. The shape and size of the obtained nanosheets are optimized by adjusting the solvothermal time and the molar concentration ratio of Ni/Co to obtain the electrode material with the best performance. When the solvothermal time is 9 h and the molar concentration ratio of Ni/Co is 1:1, NiCoAl-LDHNs has the best morphology and electrochemical performance.
View Article and Find Full Text PDFTurning insulating silk fibroin materials into conductive ones turns out to be the essential step toward achieving active silk flexible electronics. This work aims to acquire electrically conductive biocompatible fibers of regenerated Bombyx mori silk fibroin (SF) materials based on carbon nanotubes (CNTs) templated nucleation reconstruction of silk fibroin networks. The electronical conductivity of the reconstructed mesoscopic functional fibers can be tuned by the density of the incorporated CNTs.
View Article and Find Full Text PDFSilkworm silk has been considered to be a luxurious textile for more than five thousand years. Native silk fibroin (SF) films have excellent (ca. 90%) optical transparency and exhibit fluorescence under UV light.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2019
In this work, we demonstrate the principle of mesoscopic construction of silk fibroin (SF) hybrid materials, which endows the materials with new performance. In implementing this strategy, mediating molecules, wool keratin (WK) molecules, were adopted to in-line synthesize Au nanoparticles (WK@AuNPs), which further create the stable linkage of AuNPs with SF nanofibril networks via templated β-crystallization. Fourier transform infrared spectroscopy, X-ray diffraction, and atomic force microscopy demonstrate that the mesoscopic hybrid network structure of the hybrid materials is different from neat SF materials, which gives rise to various new performances, that is, long-stable fluorescence emission.
View Article and Find Full Text PDFTransient devices have attracted extensive interest because they allow changes in physical form and device function under the control of external stimuli or related commands and have very broad application prospects for information security, biomedical care and the environment. Transient bioelectrical devices were fabricated inspired by a silkworm moth breaking out of its cocoon, which has shown many advantages, including the use of mild stimulation, biocompatible materials, a simple process, and a universal strategy. For the fabrication of the transient devices, heat-sensitive microspheres with a 9.
View Article and Find Full Text PDFGraphitic nitrogen-doped hierarchical porous carbon nanosheets for supercapacitor application were derived from an easily obtained and green silk by simultaneous ZnCl activation and FeCl graphitization at different heating temperatures. By increasing the heating temperature from 700 to 850 °C, the degree of graphitization and BET surface area rose to their highest levels, while the nitrogen doping content was maintained at 2.24 wt%.
View Article and Find Full Text PDFAlthough quantum dots (QDs) have remarkable potential application in flexible light emitting diodes (LED), the loss of solvent-protected QDs leads to low quantum yield (QY) and poor stability, severely restricting the development. Flexible QD LEDs (Q-LEDs) with three primary colors were fabricated by mixing CdS/ZnS, CdSe@ZnS/ZnS, and CdSe/CdS QDs with polydimethylsiloxane (PDMS) by in situ hydrosilylation based surface manipulation strategy, which endows the device with highly ultrastable and luminescent performance. The surface manipulation strategy mainly includes the control of solvent dosage, purification times of QDs, concentration of QDs in PDMS, and oxidation on the preparation process of the QDs and PDMS composites.
View Article and Find Full Text PDFUnfolded protein response (UPR) and endoplasmic reticulum (ER)-phagy are essential for cell homeostasis. Quantum dots (QDs), which have been widely used for biomedical applications, can accumulate in the kidney tissues and may cause renal dysfunction. However, the molecular mechanism of QDs-induced nephrotoxicity is still obscure.
View Article and Find Full Text PDFSilk fibroin (SF) offers great opportunities in manufacturing biocompatible/partially biodegradable devices with environmental benignity and biomedical applications. To obtain active SF devices of next generation, this work is to demonstrate a new functionalization strategy of the mesoscopic functionalization for soft materials. Unlike the atomic functionalization of solid materials, the meso-functionalization is to incorporate meso-dopants, i.
View Article and Find Full Text PDFCorrection for 'Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles' by Naibo Lin et al., Chem. Soc.
View Article and Find Full Text PDF