The immobilization of the non-metallic enzyme formate dehydrogenase from Candida boidinii (CbFDH) into a nanoporous carbon with appropriate pore structure was explored for the bioelectrochemical conversion of CO to formic acid (FA). Higher FA production rates were obtained upon immobilization of CbFDH compared to the performance of the enzyme in solution, despite the lower nominal CbFDH to NADH (β-nicotinamide adenine dinucleotide reduced) cofactor ratio and the lower amount of enzyme immobilized. The co-immobilization of the enzyme and a rhodium complex as mediator in the nanoporous carbon allowed the electrochemical regeneration of the cofactor.
View Article and Find Full Text PDFThis study reports the immobilization of two biocatalysts (e.g., cytochrome c-Cyt c-and the non-metalloenzyme formate dehydrogenase from Candida boidinii-cbFDH) on a series of mesoporous carbons with controlled pore sizes.
View Article and Find Full Text PDFThe one-step vacuum carbonization synthesis of a platinum nano-catalyst embedded in a microporous heterocarbon (Pt@cPIM) is demonstrated. A nitrogen-rich polymer of an intrinsic microporosity (PIM) precursor is impregnated with PtCl₆ to give (after vacuum carbonization at 700 °C) a nitrogen-containing heterocarbon with embedded Pt nanoparticles of typically 1⁻4 nm diameter (with some particles up to 20 nm diameter). The Brunauer-Emmett-Teller (BET) surface area of this hybrid material is 518 m² g (with a cumulative pore volume of 1.
View Article and Find Full Text PDFl-lactate is an essential metabolite present in embryonic cell culture. Changes of this important metabolite during the growth of human embryo reflect the quality and viability of the embryo. In this study, we report a sensitive, stable, and easily manufactured electrochemical biosensor for the detection of lactate within embryonic cell cultures media.
View Article and Find Full Text PDF