Publications by authors named "Nai-Le Liu"

We report new Gaussian boson sampling experiments with pseudo-photon-number-resolving detection, which register up to 255 photon-click events. We consider partial photon distinguishability and develop a more complete model for the characterization of the noisy Gaussian boson sampling. In the quantum computational advantage regime, we use Bayesian tests and correlation function analysis to validate the samples against all current classical spoofing mockups.

View Article and Find Full Text PDF

Measurement-device-independent quantum key distribution (MDI-QKD) enables two legitimate users to generate shared information-theoretic secure keys with immunity to all detector side attacks. However, the original proposal using polarization encoding is sensitive to polarization rotations stemming from birefringence in fibers or misalignment. To overcome this problem, here we propose a robust QKD protocol without detector vulnerabilities based on decoherence-free subspaces using polarization-entangled photon pairs.

View Article and Find Full Text PDF

Gaussian boson sampling (GBS) is not only a feasible protocol for demonstrating quantum computational advantage, but also mathematically associated with certain graph-related and quantum chemistry problems. In particular, it is proposed that the generated samples from the GBS could be harnessed to enhance the classical stochastic algorithms in searching some graph features. Here, we use Jiǔzhāng, a noisy intermediate-scale quantum computer, to solve graph problems.

View Article and Find Full Text PDF

An independent set (IS) is a set of vertices in a graph such that no edge connects any two vertices. In adiabatic quantum computation [E. Farhi, .

View Article and Find Full Text PDF

Quantum sensing can provide the superior sensitivity for sensing a physical quantity beyond the shot-noise limit. In practice, however, this technique has been limited to the issues of phase ambiguity and low sensitivity for small-scale probe states. Here, we propose and demonstrate a full-period quantum phase estimation approach by adopting the Kitaev's phase estimation algorithm to eliminate the phase ambiguity and using the GHZ states to obtain phase value, simultaneously.

View Article and Find Full Text PDF
Article Synopsis
  • * High-quality N00N states are hard to create and easily damaged by photon loss, limiting their effectiveness for consistent quantum measurements.
  • * The new method combines nonlinear interferometers and squeezed light to achieve a significant 5.8-fold increase in measurement sensitivity without major drawbacks, making it practical for real-world applications in quantum metrology.
View Article and Find Full Text PDF
Article Synopsis
  • Long-distance quantum state transfer (QST) relies on quantum teleportation and involves distant parties, Alice and Bob, communicating through a shared entangled state created by a source, Charlie.
  • Atmospheric turbulence complicates the process of accurately measuring the entangled states as they travel, which traditionally requires local Bell-state measurements by Alice and Charlie.
  • The study showcases a successful long-distance QST over 1200 km using a stable interferometer and satellite technology, achieving an average fidelity of 0.82±0.01 for six distinct quantum states, surpassing the classical limit for qubit transfer.
View Article and Find Full Text PDF

The recognition of entanglement states is a notoriously difficult problem when no prior information is available. Here, we propose an efficient quantum adversarial bipartite entanglement detection scheme to address this issue. Our proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits, where a two-outcome measurement can be used to query a classical binary result about whether the input state is bipartite entangled or not.

View Article and Find Full Text PDF

Quantum self-testing is a device-independent way to certify quantum states and measurements using only the input-output statistics, with minimal assumptions about the quantum devices. Because of the high demand on tolerable noise, however, experimental self-testing was limited to two-photon systems. Here, we demonstrate the first robust self-testing for multiphoton genuinely entangled quantum states.

View Article and Find Full Text PDF

We report phase-programmable Gaussian boson sampling (GBS) which produces up to 113 photon detection events out of a 144-mode photonic circuit. A new high-brightness and scalable quantum light source is developed, exploring the idea of stimulated emission of squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states.

View Article and Find Full Text PDF

Quantum error correction is an essential tool for reliably performing tasks for processing quantum information on a large scale. However, integration into quantum circuits to achieve these tasks is problematic when one realizes that nontransverse operations, which are essential for universal quantum computation, lead to the spread of errors. Quantum gate teleportation has been proposed as an elegant solution for this.

View Article and Find Full Text PDF

We propose a new method to directly measure a general multiparticle quantum wave function, a single matrix element in a multi-particle density matrix, by quantum teleportation. The density matrix element is embedded in a virtual logical qubit and is nondestructively teleported to a single physical qubit for readout. We experimentally implement this method to directly measure the wave function of a photonic mixed quantum state beyond a single photon using a single observable for the first time.

View Article and Find Full Text PDF

Heralded entangling quantum gates are an essential element for the implementation of large-scale optical quantum computation. Yet, the experimental demonstration of genuine heralded entangling gates with free-flying output photons in linear optical system, was hindered by the intrinsically probabilistic source and double-pair emission in parametric down-conversion. Here, by using an on-demand single-photon source based on a semiconductor quantum dot embedded in a micropillar cavity, we demonstrate a heralded controlled-NOT (CNOT) operation between two single photons for the first time.

View Article and Find Full Text PDF

Quantum key distribution (QKD) has the potential to enable secure communication and information transfer. In the laboratory, the feasibility of point-to-point QKD is evident from the early proof-of-concept demonstration in the laboratory over 32 centimetres; this distance was later extended to the 100-kilometre scale with decoy-state QKD and more recently to the 500-kilometre scale with measurement-device-independent QKD. Several small-scale QKD networks have also been tested outside the laboratory.

View Article and Find Full Text PDF

Quantum key distribution (QKD) networks hold promise for sharing secure randomness over multi-partities. Most existing QKD network schemes and demonstrations are based on trusted relays or limited to point-to-point scenario. Here, we propose a flexible and extensible scheme named as open-destination measurement-device-independent QKD network.

View Article and Find Full Text PDF

Quantum no-cloning, the impossibility of perfectly cloning an arbitrary unknown quantum state, is one of the most fundamental limitations due to the laws of quantum mechanics, which underpin the physical security of quantum key distribution. Quantum physics does allow, however, approximate cloning with either imperfect state fidelity and/or probabilistic success. Whereas approximate quantum cloning of single-particle states has been tested previously, experimental cloning of quantum entanglement-a highly nonclassical correlation-remained unexplored.

View Article and Find Full Text PDF

Quantum computers promise to perform certain tasks that are believed to be intractable to classical computers. Boson sampling is such a task and is considered a strong candidate to demonstrate the quantum computational advantage. We performed Gaussian boson sampling by sending 50 indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and random matrix-the whole optical setup is phase-locked-and sampling the output using 100 high-efficiency single-photon detectors.

View Article and Find Full Text PDF

We report a proof-of-principle demonstration of Shor's algorithm with photons generated by an on-demand semiconductor quantum dot single-photon source for the first time. A fully compiled version of Shor's algorithm for factoring 15 has been accomplished with a significantly reduced resource requirement that employs the four-photon cluster state. Genuine multiparticle entanglement properties are confirmed to reveal the quantum character of the algorithm and circuit.

View Article and Find Full Text PDF

Quantum key distribution (QKD) is a theoretically secure way of sharing secret keys between remote users. It has been demonstrated in a laboratory over a coiled optical fibre up to 404 kilometres long. In the field, point-to-point QKD has been achieved from a satellite to a ground station up to 1,200 kilometres away.

View Article and Find Full Text PDF

Entanglement witness is of great importance in characterizing quantum systems. The imperfections in conventional entanglement witness schemes could lead to the misidentification of a separated state as an entangled state. Measurement-device-independent entanglement witness (MDIEW) has been proposed and demonstrated to resolve the imperfect measurement devices.

View Article and Find Full Text PDF

Ensuring the nonentanglement-breaking (non-EB) property of quantum channels is crucial for the effective distribution and storage of quantum states. However, a practical method for direct and accurate certification of the non-EB feature is highly desirable. Here, we propose and verify a realistic source based measurement device independent certification of non-EB channels.

View Article and Find Full Text PDF

Quantum mechanics and the general theory of relativity are two pillars of modern physics. However, a coherent unified framework of the two theories remains an open problem. Attempts to quantize general relativity have led to many rival models of quantum gravity, which, however, generally lack experimental foundations.

View Article and Find Full Text PDF

Quantum teleportation allows a "disembodied" transmission of unknown quantum states between distant quantum systems. Yet, all teleportation experiments to date were limited to a two-dimensional subspace of quantized multiple levels of the quantum systems. Here, we propose a scheme for teleportation of arbitrarily high-dimensional photonic quantum states and demonstrate an example of teleporting a qutrit.

View Article and Find Full Text PDF

Quantum-to-classical transition is a fundamental open question in physics frontier. Quantum decoherence theory points out that the inevitable interaction with environment is a sink carrying away quantum coherence, which is responsible for the suppression of quantum superposition in open quantum system. Recently, quantum Darwinism theory further extends the role of environment, serving as communication channel, to explain the classical objectivity emerging in quantum measurement process.

View Article and Find Full Text PDF

Measurement-device-independent quantum key distribution (MDI-QKD) can eliminate all detector side channels and it is practical with current technology. Previous implementations of MDI-QKD all used two symmetric channels with similar losses. However, the secret key rate is severely limited when different channels have different losses.

View Article and Find Full Text PDF