DNA damage and defective DNA repair are extensively linked to neurodegeneration in Parkinson's disease (PD), but the underlying molecular mechanisms remain poorly understood. Here, we determined that the PD-associated protein DJ-1 plays an essential role in modulating DNA double-strand break (DSB) repair. Specifically, DJ-1 is a DNA damage response (DDR) protein that can be recruited to DNA damage sites, where it promotes DSB repair through both homologous recombination and nonhomologous end joining.
View Article and Find Full Text PDFMicroglial hyperactivation of the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome contributes to the pathogenesis of Parkinson's disease (PD). Recently, neuronally expressed NLRP3 was demonstrated to be a Parkin polyubiquitination substrate and a driver of neurodegeneration in PD. However, the role of Parkin in NLRP3 inflammasome activation in microglia remains unclear.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD), with either rapid eye movement sleep behavior disorder (RBD) or olfactory dysfunction (OD), has been associated with disease progression. However, there is currently heterogeneity in predicting prognosis.
Objectives: To identify whether the concurrent presence of OD and probable RBD (pRBD) in PD (Dual hit in PD, PD-DH) is associated with disease progression.
Ferroptosis, a novel form of regulated cell death, is caused by accumulation of lipid peroxides and excessive iron deposition. This process has been linked to the death of dopaminergic neurons in substantia nigra compacta (SNc) of Parkinson's disease (PD) patients. Quercetin (QCT), a natural flavonoid, has multiple pharmacological activities.
View Article and Find Full Text PDFBackground: Emerging evidence indicates that the apolipoprotein E (APOE) ε4 exacerbates α-synuclein pathology.
Objective: To determine whether APOE ε4 contributes to motor progression in early Parkinson's disease (PD).
Methods: Longitudinal data were obtained from 384 patients with PD divided into APOE ε4 carriers (n = 85) and noncarriers (n = 299) in the Parkinson's Progression Marker Initiative.
Background: To date, the genetic contribution to Parkinson's disease (PD) remains unclear. Mutations in the collagen type VI alpha 3 (COL6A3) gene were recently identified as a cause of isolated dystonia. Since PD and dystonia are closely related disorders with shared clinical and genetic characteristics, we explored the association between COL6A3 and PD in a Chinese cohort.
View Article and Find Full Text PDFRecently, the arylsulfatase A (ARSA) variant c.899 T > C (p.L300S) was identified to be segregated with Parkinson's disease (PD) in one family of Japanese descent.
View Article and Find Full Text PDF