Leber's hereditary optic neuropathy (LHON) is an ocular mitochondrial disease that involves the impairment of mitochondrial complex I, which is an important contributor to blindness among young adults across the globe. However, the disorder has no available cures, since the approved drug idebenone for LHON in Europe relies on bypassing complex I defects rather than fixing them. Herein, mRNA-loaded nanoparticle (mNP)-engineered mitochondria (mNP-Mito) were designed to replace dysfunctional mitochondria with the delivery of exogenous mitochondria, normalizing the function of complex I for treating LHON.
View Article and Find Full Text PDFPulmonary fibrosis (PF) is an interstitial lung disease tightly associated with the disruption of mitochondrial pool homeostasis, a delicate balance influenced by functional and dysfunctional mitochondria within lung cells. Mitochondrial transfer is an emerging technology to increase functional mitochondria via exogenous mitochondrial delivery; however, the therapeutic effect on mitochondrial transfer is hampered during the PF process by the persistence of dysfunctional mitochondria, which is attributed to impaired mitophagy. Herein, we reported engineering chondria mediated by itophagy-nhanced anoparticle (Mito-MEN), which promoted synchronal regulation of functional and dysfunctional mitochondria for treating PF.
View Article and Find Full Text PDFMitochondrial genome (mtDNA) independent of nuclear gene is a set of double-stranded circular DNA that encodes 13 proteins, 2 ribosomal RNAs and 22 mitochondrial transfer RNAs, all of which play vital roles in functions as well as behaviors of mitochondria. Mutations in mtDNA result in various mitochondrial disorders without available cures. However, the manipulation of mtDNA via the mitochondria-targeted gene delivery faces formidable barriers, particularly owing to the mitochondrial double membrane.
View Article and Find Full Text PDF