Protein-ligand interactions represent an essential step to understand the bases of molecular recognition, an intense field of research in many scientific areas. Structural biology has played a central role in unveiling protein-ligand interactions, but current techniques are still not able to reliably describe the interactions of ligands with highly flexible regions. In this work, we explored the capacity of AlphaFold2 (AF2) to estimate the presence of interactions between ligands and residues belonging to disordered regions.
View Article and Find Full Text PDFSummary: A collection of conformers that exist in a dynamical equilibrium defines the native state of a protein. The structural differences between them describe their conformational diversity, a defining characteristic of the protein with an essential role in multiple cellular processes. Since most proteins carry out their functions by assembling into complexes, we have developed CoDNaS-Q, the first online resource to explore conformational diversity in homooligomeric proteins.
View Article and Find Full Text PDFMotivation: After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence.
View Article and Find Full Text PDFThe MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process.
View Article and Find Full Text PDF