Publications by authors named "Nahla S Barakat"

In the present study, Diclofenac Sodium (DS) matrix tablets were prepared by direct compression method under different compression forces (5, 10, 15 and 20 KN), using ethylcellulose as matrix forming material. The produced tablets were characterized on the foundation of satisfactory tablet properties such as hardness, friability, drug content, weight variations and in vitro drug release rate. Differential scanning calorimetry (DSC), Fourier Transform Infrared (FT-IR) spectroscopy and X-ray diffraction have been used to investigate any incompatibilities of the tablet's ingredients.

View Article and Find Full Text PDF

Gliclazide (GLZ)-loaded microparticles made with a polymeric blend were prepared by a solvent evaporation technique. Organic solutions of two polymers, poly(ε-caprolactone) (PCL) and Eudragit RS (E RS) or ethyl cellulose (EC), in different weight ratios, and 33.3% of GLZ were prepared and dropped into aqueous solution of poly vinyl alcohol, in different experimental conditions, achieving drug-loaded microparticles.

View Article and Find Full Text PDF

Objectives: The objective of this study was to prepare gliclazide-chitosan microparticles with tripolyphosphate by ionic crosslinking.

Methods: Chitosan microparticles were produced by emulsification and ionotropic gelation. The effects of process variables including chitosan concentration, pH of tripolyphosphate solution, glutaraldehyde volume and release modifier agent such as pectin added to the tripolyphosphate crosslinking solution were evaluated.

View Article and Find Full Text PDF

Gliclazide (GLZ)/Chitosan microparticles were prepared with tripolyphosphate (TPP) by ionic cross-linking. The particle sizes of TPP-chitosan microparticles were in the range 675-887 µm and the loading efficiencies of drug was more than 94.0%.

View Article and Find Full Text PDF

The purpose of this study was to prepare a pressure-controlled colon delivery capsule (PCDC) containing theophylline (TPH) dispersion in a lipid matrix as a chronotherapeutic drug delivery system for the treatment of nocturnal asthma. The system was made by film coating using Eudragit S100- based formula over the sealed-hard gelatin capsules containing the drug-lipid dispersion. The lipid formula was composed mainly of Gelucire 33/01 (G33) with different ratios of surfactants (1-10%).

View Article and Find Full Text PDF

In view of the good skin tolerability, glycofurol was used as a vehicle-based gel, and its effect in the topical penetration of Naproxen (NAP) was investigated. The aims of this study were to develop a suitable gel with bioadhesive property, spreadability, and viscosity for topical anti-inflammatory effect. Three gelling and adhesive agents were examined: Carbopol 974P, Gantrez AN 119, and polyvinylpyrollidone K30.

View Article and Find Full Text PDF

Objectives: The objective of this study was to prepare a self-emulsifying drug delivery system (SEDDS) for oral bioavailability enhancement of a poorly water-soluble drug, etodolac. The SEDDS formulations were optimized by evaluating their ability to self-emulsify when introduced to an aqueous medium under gentle agitation, and by determination of the particle size of the resulting emulsion.

Methods: An optimized formulation of SEDDS (composed of 20% etodolac, 30% oil Labrafac WL1349, 10% Lauroglycol 90 and 40% Labrasol) was selected for bioavailability assessment in rabbits.

View Article and Find Full Text PDF

Magnetic nanoparticles are attractive targets owing to their unique characteristics that are not shared by bulk materials. Magnetic particles, ranging from nanometer-sized to 1 microm in size, are being used in an increasing number of medical applications. The important properties of magnetic particles for medical applications are nontoxicity, biocompatiblilty, injectability and high-level accumulation in the target tissue or organ.

View Article and Find Full Text PDF

The objective of this study was to investigate the effect of lipophilic (Compritol 888 ATO) and hydrophilic components (combination of HPMC and Avicel) on the release of carbamazepine from granules and corresponding tablet. Wet granulation followed by compression was employed for preparation of granules and tablets. The matrix swelling behavior was investigated.

View Article and Find Full Text PDF

Rectal etodolac-Poloxamer gel systems composed of Poloxamer and bioadhesive polymers were developed and evaluated. Hydroxypropylmethyl cellulose, poly)vinyl) pyrrolidone, methyl cellulose, hydroxyethylcellulose, and carbopol were examined as mucoadhesive polymers. The characteristics of the rectal gels differed according to the properties of mucoadhesive polymers.

View Article and Find Full Text PDF

The objective of this study was to investigate the effect of lipophilic (Compritol 888 ATO) and hydrophilic components (combination of HPMC and Avicel) on the release of carbamazepine from granules and corresponding tablet. Wet granulation followed by compression was employed for preparation of granules and tablets. The matrix swelling behavior was investigated.

View Article and Find Full Text PDF

The basic objectives of this study were to prepare and characterize solid dispersions of poorly soluble drug spironolactone (SP) using gelucire carriers by spray-drying technique. The properties of the microparticles produced were studied by differential scanning calorimetry (DSC), scanning electron microscopy, saturation solubility, encapsulation efficiency, and dissolution studies. The absence of SP peaks in DSC profiles of microparticles suggests the transformation of crystalline SP into an amorphous form.

View Article and Find Full Text PDF

The objective of the present study was to prepare multiple-unit formulations of carbamazepine (CBZ) using an emulsion congealing technique. CBZ-hydrogenated castor oil (HCO) (Cutina® HR) wax microparticles were prepared without organic solvents as an alternative to polymeric microparticles. The process involved emulsification and solidification of CBZ-HCO melt at a significantly low temperature (5°C).

View Article and Find Full Text PDF

This study examined the release of carbamazepine (CBZ) from hydrophobic (Compritol 888 ATO) and hydrophilic-hydrophobic matrix combination (Compritol 888 ATO-hydroxpropyl methylcellulose, HPMC). Hydrophobic matrix tablets were prepared by hot fusion technique, while hydrophilic-hydrophobic matrix tablets were prepared by wet granulation technique. The properties of the compressed matrix tablets were determined according to the US Pharmacopoeia.

View Article and Find Full Text PDF

The aim of this study was to develop and characterize diclofenac sodium loaded-cellulose acetate butyrate microparticles in order to obtain a controlled-release system. The influence of the type of polymer, the volume and composition of the internal phase, drug loading, surfactant concentration and additive added on microparticles characteristics (particle size, encapsulation efficiency, surface morphology and in vitro release profiles) was studied to optimize the microparticles system. The resultant microparticles were evaluated for the recovery, average particle size, drug loading and incorporation efficiency.

View Article and Find Full Text PDF

Lipospheres of carbamazepine were prepared by melt dispersion technique using Precifac ATO 5 in the various drug-lipid ratios. The resulting free-flowing lipospheres were evaluated with respect to surface morphology, particle size distribution, encapsulation efficiency, and in vitro release behavior. The effect of druglipid ratio, the surfactant added, emulsion stabilizer, and stirring speed also were identified as the key variables affecting the formation of discrete spherical lipospheres and drug release rate.

View Article and Find Full Text PDF

The purpose of this study was to develop and assess the in vitro characteristics of carbamazepine-loaded microspheres. A solvent evaporation method was used to incorporate carbamazepine (CBZ) into poly (D,L-lactide-co-glycolide) (PLGA) with different molecular weights. The optimum conditions for CBZ-PLGA microspheres preparation were considered and the in vitro release of CBZ of PLGA microspheres were followed up to 24 hr in USP dissolution medium.

View Article and Find Full Text PDF