Objectives: The aim of this study is to develop an intelligent diagnostic system utilizing machine learning for data cleansing, then build an intelligent model and obtain new cutoff values for APRI (aspartate aminotransferase-to-platelet ratio) and FIB-4 (fibrosis score) for the prediction and staging of fibrosis in children with chronic hepatitis C (CHC).
Methods: Random forest (RF) was utilized in this study for data cleansing; then, prediction and staging of fibrosis, APRI and FIB-4 scores and their areas under the ROC curve (AUC) have been obtained on the cleaned dataset. A cohort of 166 Egyptian children with CHC was studied.
IEEE Trans Inf Technol Biomed
July 2010
Diabetes mellitus is a chronic disease and a major public health challenge worldwide. According to the International Diabetes Federation, there are currently 246 million diabetic people worldwide, and this number is expected to rise to 380 million by 2025. Furthermore, 3.
View Article and Find Full Text PDF