Cancers (Basel)
October 2022
Accurate prediction of breast cancer metastasis in the early stages of cancer diagnosis is crucial to reduce cancer-related deaths. With the availability of gene expression datasets, many machine-learning models have been proposed to predict breast cancer metastasis using thousands of genes simultaneously. However, the prediction accuracy of the models using gene expression often suffers from the diverse molecular characteristics across different datasets.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
June 2022
Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due to the high-dimensional feature space and the complexity of models. As interpretability is critical for the transparency and fairness of ML models, several algorithms have been proposed to improve the interpretability of arbitrary classifiers.
View Article and Find Full Text PDFBMC Bioinformatics
September 2020
Background: The abundance of molecular profiling of breast cancer tissues entailed active research on molecular marker-based early diagnosis of metastasis. Recently there is a surging interest in combining gene expression with gene networks such as protein-protein interaction (PPI) network, gene co-expression (CE) network and pathway information to identify robust and accurate biomarkers for metastasis prediction, reflecting the common belief that cancer is a systems biology disease. However, controversy exists in the literature regarding whether network markers are indeed better features than genes alone for predicting as well as understanding metastasis.
View Article and Find Full Text PDFBackground: Discovering a highly accurate and robust gene signature for the prediction of breast cancer metastasis from gene expression profiling of primary tumors is one of the most challenging tasks to reduce the number of deaths in women. Due to the limited success of gene-based features in achieving satisfactory prediction accuracy, many methodologies have been proposed in recent years to develop network-based features by integrating network information with gene expression. However, evaluation results are inconsistent to confirm the effectiveness of network-based features, because of many confounding factors involved in classification model learning process, such as data normalization, dimension reduction, and feature selection.
View Article and Find Full Text PDF