In this article, we investigate the interface between shuttlecock-shaped chloro boron-subphthalocyanine molecules and the Cu(111) surface. We highlight how molecular planarization induced by van der Waals forces can fundamentally alter the interface properties and how it can enable a particularly strong hybridization between molecular and metal states. In our simulations, we start from a situation in which we disregard van der Waals forces and then introduce them gradually by rescaling the interaction parameter, thereby "pulling" the molecule toward the surface.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2016
In this combined low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) study, we investigate self-assembly of the dipolar nonplanar organic semiconductor chloro boron-subphthalocyanine (ClB-SubPc) on Cu(111). We observe multiple distinct adsorption configurations and demonstrate that these can only be understood by taking surface-catalyzed dechlorination into account. A detailed investigation of possible adsorption configurations and the comparison of experimental and computational STM images demonstrates that the configurations correspond to "Cl-up" molecules with the B-Cl moiety pointing toward the vacuum side of the interface, and dechlorinated molecules.
View Article and Find Full Text PDFThe image state manifold of the dipolar organic semiconductor vanadyl naphthalocyanine (VONc) on highly oriented pyrolytic graphite is investigated by angle-resolved two-photon photoemission (AR-TPPE) spectroscopy in the 0-1 monolayer regimes. Interfacial charge-transfer from the image potential state of clean graphite populates a near-resonant VONc anion level, identifiable by the graphite image potential state by its distinct momentum dispersion obtained from AR-TPPE. This affinity level is subject to depolarization by the neighboring molecules, resulting in stabilization of this state with coverage.
View Article and Find Full Text PDF