Publications by authors named "Nahid Hassanzadeh Nemati"

In this study, the biocompatibility and tribological properties of Ti6Al4V coated with silicon nitride (SiN)/nanodiamond using the electrophoretic deposition method were investigated. Suspensions of various aqueous and alcoholic solutions were prepared in the presence of CTAB and SDS dispersers. The most stable suspension system for the electrophoresis process was selected (aqueous media/ SDS disperser).

View Article and Find Full Text PDF

Objectives: Basal cell carcinoma (BCC) is the most common form of skin cancer and the most frequently occurring form of all cancers, affecting sun-exposed areas like the face. Surgery is the main treatment, focusing on safe and minimally invasive methods for better outcomes. Technology has enabled the development of artificial skin substitutes for tissue repair.

View Article and Find Full Text PDF

Objectives: Bioglass scaffolds, which contain a significant percentage of porosity for tissue engineering purposes, have low strength. For increasing the strength and efficiency of such structures for use in tissue engineering, fabrication of hierarchical meso/macro-porous bioglass scaffolds, developing their mechanical strength by hydrothermal treatment and adjusting pH method, and achieving the appropriate mesopore size for loading large biomolecules, were considered in this study.

Materials And Methods: Mesoporous bioglass (MBG) powders were synthesized using cetyltrimethylammonium bromide as a surfactant, with different amounts of calcium sources to obtain the appropriate size of the mesoporous scaffolds.

View Article and Find Full Text PDF

Objective: The present study aims to create -loaded nanofibre-based wound dressing materials to enhance the wound healing process. is an annual herb native to the Mediterranean region. It is antipyretic, antifungal, antioedema, antidiabetic, anti-inflammatory (wound, oral and pharyngeal mucosa), antispasmodic, treats chronic ocular surface diseases, acts as a stimulant and a diaphoretic.

View Article and Find Full Text PDF

Objectives: Many people all around the world encounter major problems due to nervous system injuries. Among the various methods of treating, neural tissue engineering has attracted a lot of attention from nerve science researchers.

Materials And Methods: There are various methods for fabrication of soft tissue, however the electrospinning method (ELS) is a simple and cost-effective method that can produce porous fiber scaffolds to simulate the environment of the extracellular matrix (ECM).

View Article and Find Full Text PDF

Objectives: Bioresorbable scaffolds have been advocated as the new generation in interventional cardiology because they could provide temporary scaffolds and then disappear with resorption. Although, the available stents in clinical trials exhibited biosafety, efficacy, no death, and no apparent thrombosis, Mg-substrate degradation on drug release has not been investigated.

Materials And Methods: Therefore, more research has been needed to legitimize the replacement of current stents with Mg-based stents.

View Article and Find Full Text PDF

Conductive self -electrical stimuli bioactive scaffolds could be used the potential for peripheral nerve regeneration with the maximum efficiency. To produce such conductive self-electrical stimuli bioactive scaffolds, chopped spun piezoelectric nanofibers of polyvinylidene fluoride/mesoporous silica nanoparticle (PVDF/MCM41) are prepared and incorporated in gellan/polyaniline/graphene (gellan/PAG) nanocomposites which have been previously prepared by incorporation of polyaniline/graphene (PAG) nanoparticles in gellan gel at 80 °C. Highly conductive binary doped polyaniline/graphene nanoparticles are prepared by chemical oxidative polymerization of aniline monomer using in-suite precipitation polymerization method in presence of graphene nanoparticles and sodium dodecyl sulfate.

View Article and Find Full Text PDF