Three configurationally homogeneous diastereomers of the linear hexa(tertiary phosphine) Ph(2)PCH(2)CH(2)P(Ph)CH(2)CH(2)P(Ph)CH(2)CH(2)P(Ph)CH(2)CH(2)P(Ph)CH(2)CH(2)PPh(2) (hexaphos) have been isolated in enantiomerically pure form, namely (R,S,S,R)-, (R,S,S,S)-, and (S,S,S,S)-hexaphos. The strongly helicating (R,S,S,R)-(-) form of the ligand combines with copper(I) ions to generate by stereoselective self-assembly the P enantiomer of a parallel helicate of the type [Cu(3)(hexaphos)(2)](PF(6))(3), which has been characterized by x-ray crystallography. Theoretical modeling of the cation indicates that it is the relationship between the helicities of the two 10-membered rings containing the three copper ions, each of which has the twist-boat-chair-boat conformation, and the configurations of the three chiral, tetrahedral copper stereocenters of P configuration that determines the stereochemistry of the parallel and double alpha-helix conformers of the double-stranded trinuclear metal helicate.
View Article and Find Full Text PDF