Publications by authors named "Nagwan A Samee"

This study proposes an advanced method for plant disease detection utilizing a modified depthwise convolutional neural network (CNN) integrated with squeeze-and-excitation (SE) blocks and improved residual skip connections. In light of increasing global challenges related to food security and sustainable agriculture, this research focuses on developing a highly efficient and accurate automated system for identifying plant diseases, thereby contributing to enhanced crop protection and yield optimization. The proposed model is trained on a comprehensive dataset encompassing various plant species and disease categories, ensuring robust performance and adaptability.

View Article and Find Full Text PDF

Thyroid syndrome, a complex endocrine disorder, involves the dysregulation of the thyroid gland, impacting vital physiological functions. Common causes include autoimmune disorders, iodine deficiency, and genetic predispositions. The effects of thyroid syndrome extend beyond the thyroid itself, affecting metabolism, energy levels, and overall well-being.

View Article and Find Full Text PDF

Lung cancer is a critical health issue that demands swift and accurate diagnosis for effective treatment. In medical imaging, segmentation is crucial for identifying and isolating regions of interest, which is essential for precise diagnosis and treatment planning. Traditional metaheuristic-based segmentation methods often struggle with slow convergence speed, poor optimized thresholds results, balancing exploration and exploitation, leading to suboptimal performance in the multi-thresholding segmenting of lung cancer images.

View Article and Find Full Text PDF

Bladder cancer (BC) diagnosis presents a critical challenge in biomedical research, necessitating accurate tumor classification from diverse datasets for effective treatment planning. This paper introduces a novel wrapper feature selection (FS) method that leverages a hybrid optimization algorithm combining Orthogonal Learning (OL) with a rime optimization algorithm (RIME), termed mRIME. The mRIME algorithm is designed to avoid local optima, streamline the search process, and select the most relevant features without compromising classifier performance.

View Article and Find Full Text PDF

Bladder Cancer (BC) is a common disease that comes with a high risk of morbidity, death, and expense. Primary risk factors for BC include exposure to carcinogens in the workplace or the environment, particularly tobacco. There are several difficulties, such as the requirement for a qualified expert in BC classification.

View Article and Find Full Text PDF

The reliable operation of electrical power transmission systems is crucial for ensuring consumer's stable and uninterrupted electricity supply. Faults in electrical power transmission systems can lead to significant disruptions, economic losses, and potential safety hazards. A protective approach is essential for transmission lines to guard against faults caused by natural disturbances, short circuits, and open circuit issues.

View Article and Find Full Text PDF

The identification of tumors through gene analysis in microarray data is a pivotal area of research in artificial intelligence and bioinformatics. This task is challenging due to the large number of genes relative to the limited number of observations, making feature selection a critical step. This paper introduces a novel wrapper feature selection method that leverages a hybrid optimization algorithm combining a genetic operator with a Sinh Cosh Optimizer (SCHO), termed SCHO-GO.

View Article and Find Full Text PDF

This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images.

View Article and Find Full Text PDF

The aim of this study was to test the morphometric features affecting 20-m sprint performance in children at the first level of primary education using machine learning (ML) algorithms. In this study, 130 male and 152 female volunteers aged between 6 and 11 years were included. After obtaining demographic information of the participants, skinfold thickness, diameter and circumference measurements, and 20-m sprint performance were determined.

View Article and Find Full Text PDF
Article Synopsis
  • - The research presents a new dual-pathway convolutional neural network (DP-CNN) specifically designed for analyzing Log-Mel spectrogram images from multichannel electromyography signals, focusing on performance for both able-bodied and amputee subjects.
  • - The DP-CNN achieves high mean accuracies of 94.93% for healthy subjects in NinaPro DB1 and 85.36% for amputee subjects in DB3, showcasing its effectiveness across various datasets.
  • - Compared to previous methods, the DP-CNN shows significant performance improvements, with accuracy boosts of up to 39.09% and outperforms transfer learning models, suggesting strong potential for enhancing myoelectric control applications.
View Article and Find Full Text PDF

Plant diseases annually cause damage and loss of much of the crop, if not its complete destruction, and this constitutes a significant challenge for farm owners, governments, and consumers alike. Therefore, identifying and classifying diseases at an early stage is very important in order to sustain local and global food security. In this research, we designed a new method to identify plant diseases by combining transfer learning and Gravitational Search Algorithm (GSA).

View Article and Find Full Text PDF

Quality of life is greatly affected by chronic wounds. It requires more intensive care than acute wounds. Schedule follow-up appointments with their doctor to track healing.

View Article and Find Full Text PDF

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating illness with a significant global prevalence, affecting over 65 million individuals. It affects various systems, including the immune, neurological, gastrointestinal, and circulatory systems. Studies have shown abnormalities in immune cell types, increased inflammatory cytokines, and brain abnormalities.

View Article and Find Full Text PDF

The Internet of Things (IoT) is capable of controlling the healthcare monitoring system for remote-based patients. Epilepsy, a chronic brain syndrome characterized by recurrent, unpredictable attacks, affects individuals of all ages. IoT-based seizure monitoring can greatly enhance seizure patients' quality of life.

View Article and Find Full Text PDF

The rising risk of diabetes, particularly in emerging countries, highlights the importance of early detection. Manual prediction can be a challenging task, leading to the need for automatic approaches. The major challenge with biomedical datasets is data scarcity.

View Article and Find Full Text PDF

This paper introduces a new bio-inspired optimization algorithm named the Liver Cancer Algorithm (LCA), which mimics the liver tumor growth and takeover process. It uses an evolutionary search approach that simulates the behavior of liver tumors when taking over the liver organ. The tumor's ability to replicate and spread to other organs inspires the algorithm.

View Article and Find Full Text PDF

Medical datasets are primarily made up of numerous pointless and redundant elements in a collection of patient records. None of these characteristics are necessary for a medical decision-making process. Conversely, a large amount of data leads to increased dimensionality and decreased classifier performance in terms of machine learning.

View Article and Find Full Text PDF

The domestication of animals and the cultivation of crops have been essential to human development throughout history, with the agricultural sector playing a pivotal role. Insufficient nutrition often leads to plant diseases, such as those affecting rice crops, resulting in yield losses of 20-40% of total production. These losses carry significant global economic consequences.

View Article and Find Full Text PDF

It is crucial to accurately categorize cancers using microarray data. Researchers have employed a variety of computational intelligence approaches to analyze gene expression data. It is believed that the most difficult part of the problem of cancer diagnosis is determining which genes are informative.

View Article and Find Full Text PDF

One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease's treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors.

View Article and Find Full Text PDF

Epilepsy is a common neurological condition. The effects of epilepsy are not restricted to seizures alone. They comprise a wide spectrum of problems that might impair and reduce quality of life.

View Article and Find Full Text PDF

Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage.

View Article and Find Full Text PDF

Blood cells carry important information that can be used to represent a person's current state of health. The identification of different types of blood cells in a timely and precise manner is essential to cutting the infection risks that people face on a daily basis. The BCNet is an artificial intelligence (AI)-based deep learning (DL) framework that was proposed based on the capability of transfer learning with a convolutional neural network to rapidly and automatically identify the blood cells in an eight-class identification scenario: Basophil, Eosinophil, Erythroblast, Immature Granulocytes, Lymphocyte, Monocyte, Neutrophil, and Platelet.

View Article and Find Full Text PDF

Breast cancer, which attacks the glandular epithelium of the breast, is the second most common kind of cancer in women after lung cancer, and it affects a significant number of people worldwide. Based on the advantages of Residual Convolutional Network and the Transformer Encoder with Multiple Layer Perceptron (MLP), this study proposes a novel hybrid deep learning Computer-Aided Diagnosis (CAD) system for breast lesions. While the backbone residual deep learning network is employed to create the deep features, the transformer is utilized to classify breast cancer according to the self-attention mechanism.

View Article and Find Full Text PDF

Brain tumors (BTs) are deadly diseases that can strike people of every age, all over the world. Every year, thousands of people die of brain tumors. Brain-related diagnoses require caution, and even the smallest error in diagnosis can have negative repercussions.

View Article and Find Full Text PDF