As another part continue for our previous study, variable substituted pyrazoles bearing sulfamoylphenyl moiety were synthesized and screened against two cancer related human carbonic anhydrase (hCA) isoforms and acetazolamide (AAZ) used as a reference standard. Some compounds as 4e and 6c manifested a promising inhibitory activity against both isoforms (K = 0.072, 0.
View Article and Find Full Text PDFThis study aimed to design potent carbonic anhydrase inhibitors (CAIs) based on pyrazole benzenesulfonamide core. Nine series of substituted pyrazole benzenesulfonamide compounds were synthesized with variable groups like sulphamoyl group as in compounds 4a-e, its bioisosteric carboxylic acid as in compounds 5a-e and 8e, ethyl carboxylate ester as in compounds 6a-e and 9a-e, which were designed as potential prodrugs, isothiazole ring as in compound 7, hydrazide derivative 10e, hydroxamic acid derivatives 11a-e and semicarbazide derivatives 12a-c,e. All the synthesized compounds were investigated for their carbonic anhydrase (CA) inhibitory activity against two human CA isoforms hCA IX and hCA XII and compared to acetazolamide (AAZ).
View Article and Find Full Text PDFAim: Using cytotoxic agents with apoptosis induction may represent one of new strategies for cancer treatment to overcome the increased resistance of the disease.
Methodology: Two series of benzo[f][1,4]oxazepine-3,5(2H,4H)-diones (compounds 5, 6a-f) and 3-phenylbenzo[f][1,4]oxazepin-5(4H)-ones (compounds 10, 11a-f) were synthesized and screened for their cytotoxicity against leukemia K-562 and breast T-47D cancer cell lines as well as normal fibroblasts WI-38.
Results: The tested compounds revealed good cytotoxicity and selectivity toward cancer cell lines relative to the normal cells, especially compounds 6f, 10 and 11e, f.
Some 1-(4-chlorophenyl or benzenesulfonamide)-2,3- and/or 4-substituted-1H-pyrazol-5(4H)-one derivatives were synthesized and screened for their anti-inflammatory and analgesic activities, in addition to their ulcerogenic liability. They were found to be active as anti-inflammatory and analgesic agents. Compound 6b was found to be the most active as anti-inflammatory agent and compound 9b was found to be the most active one as anti-inflammatory and analgesic agent.
View Article and Find Full Text PDFA series of 2,5,7-trisubstituted pyrimido[4,5-d]pyrimidine cyclin-dependent kinase (CDK2) inhibitors is designed and synthesized. 6-Amino-2-thiouracil is reacted with an aldehyde and thiourea to prepare the pyrimido[4,5-d]-pyrimidines. Alkylation and amination of the latter ones give different amino derivatives.
View Article and Find Full Text PDF