Publications by authors named "Nagisa Kanetake"

This study investigated the accuracy of positioning and irradiation targeting for multiple off-isocenter targets in intracranial image-guided radiation therapy (IGRT). A phantom with nine circular targets was created to evaluate both accuracies. First, the central point of the isocenter target was positioned with a combination of an ExacTrac x-ray (ETX) and a 6D couch.

View Article and Find Full Text PDF

Dose calculation algorithms in radiation treatment planning systems (RTPSs) play a crucial role in stereotactic body radiation therapy (SBRT) in the lung with heterogeneous media. This study investigated the performance and accuracy of dose calculation for three algorithms: analytical anisotropic algorithm (AAA), pencil beam convolution (PBC) and Acuros XB (AXB) in Eclipse (Varian Medical Systems), by comparison against the Voxel Monte Carlo algorithm (VMC) in iPlan (BrainLab). The dose calculations were performed with clinical lung treatments under identical planning conditions, and the dose distributions and the dose volume histogram (DVH) were compared among algorithms.

View Article and Find Full Text PDF

The aim of this study was to measure the dose attenuation caused by a carbon fiber radiation therapy table (Imaging Couch Top; ICT, BrainLab) and to evaluate the dosimetric impact of ICT during stereotactic body radiation therapy (SBRT) in lung tumors. The dose attenuation of ICT was measured using an ionization chamber and modeled by means of a treatment planning system (TPS). SBRT was planned with and without ICT in a lung tumor phantom and ten cases of clinical lung tumors.

View Article and Find Full Text PDF

We measured the angular dependence of central and off-axis detectors in a 2D ionization chamber array, MatriXX, and applied correction factors (CFs) to improve the accuracy of composite dose verification of IMRT and VMAT. The MatriXX doses were measured with a 10° step for gantry angles (θ) of 0°-180°, and a 1° step for lateral angles of 90°-110° in a phantom, with a 30 × 10 cm2 field for 6 MV and 10 MV photons. The MatriXX doses were also calculated under the same conditions by the Monte Carlo (MC) algorithm.

View Article and Find Full Text PDF